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Abstract—As truly ubiquitous wearable computers, mobile
phones are quickly becoming the primary source for social, be-
havioral, and environmental sensing and data collection. Today’s
smartphones are equipped with increasingly more sensors and
accessible data types that enable the collection of literally dozens
of signals regarding the phone, its user, and their environment.
A great deal of research effort in academia and industry is put
into mining this data for higher level sense-making, such as
understanding user context, inferring social networks, learning
individual features, and so on. In many cases this analysis work
is the result of exploratory forays and trial-and-error. Adding
to the challenge, the devices themselves are limited platforms,
hence data collection campaign must be carefully designed in
order to collect the signals in the appropriate frequency, avoiding
the exhausting the the device’s limited battery and processing
power. Currently however, there is no structured methodology
for the design of mobile data collection and analysis initiatives. In
this work we investigate the properties of learning and inference
of real world data collected via mobile phones over time. In
particular, we analyze how the ability to predict individual
parameters and social links is incrementally enhanced with the
accumulation of additional data. To do so we use the Friends
and Family dataset, containing rich data signals gathered from
the smartphones of 140 adult members of an MIT based young-
family residential community for over a year, and is one of the
most comprehensive mobile phone datasets gathered in academia
to date. We develop several models for predicting social and
individual properties from sensed mobile phone data over time,
including detection of life-partners, ethnicity, and whether a
person is a student or not. Finally, we propose a method
for predicting the maximal learning accuracy possible for the
learning task at hand, based on an initial set of measurements.
This has various practical implications, such as better design
of mobile data collection campaigns, or evaluating of planned
analysis strategies.

I. INTRODUCTION

Smartphones have become an integral part of many peoples
everyday lives. Users carry their phone almost everywhere,

using it as their main access point for many of their day-
to-day activities. These include connecting with family and
friends via voice calls or text messaging, searching for infor-
mation on the Internet, installing and using different mobile
applications for business and leisure, using various location
based services such as navigation instructions, or simply using
the smartphone as an alarm clock.

The pervasiveness of mobile phones has made them popular
scientific data collection tools, as social and behavioral sensors
of location, proximity, communications and context. Eagle and
Pentland [1] coined the term “Reality Mining” to describe the
collection of sensor data pertaining to human social behavior.
While existing works have demonstrated results for modeling
and inference of social network structure and personal infor-
mation out of mobile phone data, most are still mainly proofs
of concept in a nascent field. The work of the “data scientist” is
still that of an artisan, using personal experience, insight, and
“gut feeling”, in order to extract meaning out of the plethora
of data and noise.

As the field of computational social science matures, there is
need for a more structured methodology, to assist researchers
in designing data collection campaigns, predicting the potential
of collected data, and estimating the accuracy limits of the
analysis. Such a methodology would facilitate the process of
maturing from a field of craft into a field of science and
engineering.

In this work, we present a first step in this direction, inves-
tigating the learning and prediction of social and individual
models from raw phone-sensed data. We focus on social ties
and individual descriptors that can be tied to social affiliation
and affinity. We examine the dynamics of the learning process
over time, analyzing how the ability to predict individual
parameters and social links is enhanced with the accumulation
of additional data.



To do this, we use the Friends and Family dataset, which
contains rich data signals gathered from the smartphones of
140 adult members of a young-family residential community
for over a year [2], as well as self-reported personal and
social-tie information. We first build classifiers for predicting
personal properties like nationality or gender. We then proceed
to predict more complicated social links such as the subjects
life-partner, or “significant other”.

We then show that the improvement in social prediction
accuracy over time can be modeled using the Gompertz
function - a known mathematical model that has been used to
approximate many processes in a variety of fields, including
growth of tumors and adoption of technological services in
communities, among others. Using this insight we propose a
novel method for a-priori prediction of the maximal learning
accuracy possible for the learning task at hand, using just the
first few measurements. This method can be used for efficient
real-time resource allocation for data collection, ongoing data
collection campaign, as well as estimating accuracy limits and
time needed for desired accuracy level of a given method.

The paper is organized as follows: We start by presenting
related work in Section II. In section III we discuss the
methodology of the experiment and our learning techniques.
Section IV contains the results, and discussion and concluding
remarks are given in Section V.

II. SCIENTIFIC BACKGROUND

In recent years the social sciences have been undergoing a
digital revolution, heralded by the emerging field of “com-
putational social science”, having the potential to increase
our knowledge of individuals, groups, and societies, with
an unprecedented breadth, depth, and scale [3]. This field
combines the leading techniques from network science [4]–
[6] with new machine learning and pattern recognition tools
specialized for the understanding of people’s behavior and
social interactions [1], [7].

Using call records, cellular-tower IDs, and Bluetooth prox-
imity logs, collected via mobile phones at the individual level,
the subjects’ social network can be accurately detected, as well
as regular patterns in daily activity [8]. Mobile phone records
from telecos have proven to enable uncovering of human
level insights: cell-tower location information were used to
characterize human mobility [9], socioeconomic status [10],
and even health [11]. This approach has expanded beyond
academia, as companies are putting such tools to use in the
commercial world to understand customer churn, enhance
targeted advertisements, and offer improved personalization
and other services [12].

Although data owned by service providers contains infor-
mation on very large numbers of subjects, this information
is constrained to specific domains (email messages, financial
transactions, etc.), and has very little, if any, contextual
information on the subjects themselves. Data collection at
the individual level, on the other hand, allows collecting
many more dimensions related to the end user, many times
not available at the operator level. Madan et al. had shown

that mobile social sensing can be used for measuring and
predicting the health status of individuals based on mobility
and communication patterns [11]. They had also investigated
the spread of political opinion within a community [13]. Other
examples for using mobile phones for individual-based social
sensing are those by Montoliu et al. [14], Lu et al. [15], and
projects coming from CENS center [16], and additional works
as described in [17].

The technical advancements in mobile phone platforms and
the availability of software development kits to any developer
is making the collection of Reality Mining type of data
easier than ever before. In addition to mobile phones, there
have been other types of wearable sensor-based social data
collection initiatives. A notable example is the Sociometric
Badge by Olguin et al. which captures human activity and
socialization patterns and are used mostly for data collection
in organizational settings [18]. Additional works that focus on
methods for learning and prediction of social and individual
properties from mobile phone data can be found in [19]–[21].

III. MATERIALS AND METHOD

A. Methodology

We evaluate our model using the Friends and Family
dataset, which contains rich data signals gathered from the
smartphones of 140 adult members of a young-family resi-
dential community for over a year, as well as self-reported
personal and social-tie information [2].

Based on data collected from these networks, we have
developed classifiers capable of accurately predicting personal,
behavioral and social attributes of the network’s users. We
then studied the correlation between the amount of time an
attacking agent monitors its host victim, and the accuracy of
the information it produces, using our classifiers. We show
that this process can be modeled using a Gompertz function.
Based on this insight, we show how the accuracy of inferring
personal and social features from mobile data can easily be
approximated using an extrapolation of this Gompertz based
model.

B. Data Collection Platform

Data was collected using our proprietary Android based
platform [2]. Monitored signals included traditional sensors
such as GPS or accelerometer, file system scans as well as
user behavior patterns inside third party applications. Other
monitored signals were cell tower ID, wireless LAN IDs;
proximity to nearby phones and Bluetooth devices; call and
SMS logs; statistics on installed phone applications, running
applications, media files, general phone usage; and other
accessible information.

The “Friends and Family” living laboratory study was
conducted over a period of 15 months between March 2010
and June 2011, with a subject pool of 140 individuals.

To the best of our knowledge, the dataset generated in
the study is among the largest and richest ever collected
on a residential community to date. The dataset contains 20
million WiFi scans (243 million scanned devices), 5 million



Bluetooth proximity scans (16 million scanned devices), over
200,000 phone calls, 100,000 text messages, and more. The
study also collected self-reported personal information on each
participant, such as age, gender, religion, origin, current and
previous income status, ethnicity, and marital status.

C. Community Overview

The experiment was conducted with members of young-
family residential living community adjacent to MIT. All
members of the community are couples, and at least one of
the members is affiliated with the university. The community is
composed of over 400 residents, approximately half of which
have children. In March 2010 the first pilot phase of the study
was launched with 55 participants, and in September 2010, the
second phase of this study was launched with 85 additional
participants. The participants were selected randomly, in a way
that would achieve a representative sample of the community
and sub-communities.

D. Privacy Considerations

The study was approved by the Institutional Review Board
(IRB) and conducted under strict protocol guidelines. One
of the key concerns in the design of the study was the
protection of participant privacy and sensitive information.
Coded identifiers for participants were used, and all human-
readable text was hashed before streaming. Collected data
was physically secured and de-identified before being used
for aggregate analysis.

E. Building the Classifiers

We created feature vectors for each participant in the study,
containing information on the participant’s communication and
phone usage patterns. We extracted the following 20 different
features for each participant:

• Internet usage features: number of searches performed
using the phone’s browser; number of bookmarks saved.

• Calls pattern features: number of incoming / outgoing /
missed calls; number of unique phone numbers per call
type; total duration of calls.

• SMS messages pattern features: number of incoming
/ outgoing SMS messages; number of unique phone
numbers per SMS type.

• Phone applications related features: number of applica-
tions installed and uninstalled; total number of currently
running applications (sampled every 30 seconds).

• Alarm features: number of alarm-clock alarms; number
of “snooze” presses.

• Location features: number of different cell tower IDs;
number of different WiFi network names seen by the
phone.

We used WEKA [22] for implementing popular machine
learning algorithms and selecting the best classifier for
each attribute. Specifically, we tested WEKA’s C4.5 Decision
Trees, Naive-Bayes, Rotation-Forest, Random-Forest, and Ad-
aBoostM1. Each classifier was evaluated using the 10-fold
cross validation approach, using each classifier’s Area Under

Curve (AUC) measure and F-measure, and analyzed using
WEKA’s Information Gain Attribute Selection Algorithm.

IV. PREDICTION ACCURACY EVOLUTION OVER TIME

Each classifier was executed on data gathered between Nov.
1st and Nov. 30th, 2010. Starting from an input of a single day,
in each execution the consecutive day of data was added to the
input, (so that iteration #1 was on data from November 1st,
execution #2 had input of data two days, November 1st and
2nd together, and so on). The performance of the classifiers as
a function of the monitoring time was measured, and modeled
using the Gompertz function, a widely used function in the
parametric form :

y(t) = aebe
ct

(for different values of a, b and c for each attribute, according
to the evolution of the learning curve of its classifier).

The applicability of the Gompertz function for modeling
local behavior patterns of mobile users was demonstrated in
[23], predicting the applications users chose to install. This
experiment had shown that this process can be best modeled
using the Gompertz instance for a = 1, b = c = −1. It
has also been used for modeling mobile phone uptake [24],
population in a confined space [25], and growth of tumors
[26].

Following is a detailed description of 4 of the classifiers we
have created: (1) the ethnicity of a user, (2) whether the user
is a student or not, (3) whether the user is a native US citizen
or not, and (4) who is the significant other of each user.

Ethnicity: The Louvain method for community detection
[27] partitioned the SMS social network into 13 disjoint groups
(Figures 1 and 2), successfully predicting the ethnicity of 60%
of the participants (77 out of 128 with known ethnicity). See
prediction evolution and Gompertz regression in Figure 3.

Is student: Our dataset contained the occupation of 88
users, almost half of which were students. Rotation-Forest
classifier yielded AUC of 0.639 and an F-measure of 0.625.
See prediction evolution and Gompertz regression in Figure 4.

US-natives: Our dataset contained information regarding
the origin of 86 user. Our Naive-Bayes classifier yielded AUC
of 0.728 and an F-measure of 0.806. See prediction evolution
and Gompertz regression in Figure 5.

Significant other: Analyzing the social structure of the
Bluetooth collocation social graph (Figure 6) succeeded in
classifying 65.6% of the couples (44 out of 67). See prediction
evolution and Gompertz regression in Figure 7.

V. DISCUSSION AND CONCLUSIONS

In this paper we have examined the way learning and pre-
diction process evolves in time, as the amount of data available
to the learning algorithm increases. We have shown that this
process can be well modeled using the known Gompertz
function. We have demonstrated that this result holds for the
prediction of different features, both social and individual, and
for a set of different prediction methodologies, using a varying
number of input signals, all collected via mobile phones in a



Fig. 1. Partitioned SMS Social Network Using Louvain algorithm [27].
Each group has different ethnicity according to the major ethnicity of the
group (Blue: Asian, Purple: Caucasian, Green: Middle Eastern).

Fig. 2. SMS Social Network Graph created over 65 weeks (graph also
includes unknown out-of-study nodes, which connect to at least two known
in-study nodes). Different vertex colors represent different ethnicity.

field deployment. We have done so using a unique dataset,
cultivated from a long-term comprehensive study done at the
MIT dorms.

Furthermore, our findings can be used as a method for ad-
vance prediction of the maximal learning accuracy possible for
the learning task at hand, using just the first few measurements,
by extrapolating the learned Gompertz functions as illustrated
in Figure 8. Such extrapolation can either be used in design-
time to predict the maximal expected accuracy, or alternatively
to assess in real-time our location for each signals estimated
accuracy curve. We can then use this information to evaluate
the analysis method, anticipate the timeline for increased
accuracy, and understand when it is time to stop collecting data
as we have reached a state of saturation. Another possible use
is comparing different learning processes to one another, and
using this information as part of the experiment or analysis

Fig. 3. The prediction accuracy of the Ethnicity classifier. The vertical axis
represents the percentage of correct predictions, for the Gompertz function
f(t) = 0.68e−2.18e−0.05t

with regression residual standard error of 0.06676,
and achieved convergence tolerance of 5.568e-06.

Fig. 4. The prediction accuracy of the Is Student classifier. Vertical axis repre-
sents AUC values. The fitted Gompertz function is f(t) = 0.69e−0.35e−0.06t

with regression residual standard error of 0.02237, and achieved convergence
tolerance of 4.095e-06.

management process.
Correlations between the evolution trends of the different

learning process, as depicted in Figure 9, may imply cer-
tain underlying correlations in the raw data itself, and can
be used as additional validation for correlated features and
observations (such as the suggestion that people might have



Fig. 5. The prediction accuracy of the US Citizen classifier. The vertical
axis represents the area under curve (AUC) values. The best fitted Gompertz
function is f(t) = 0.8e−0.4e−0.14t

with regression residual standard error
of 0.02591, and achieved convergence tolerance of 7.404e-06.

Fig. 6. Bluetooth social network graph of face-to-face interaction during
November 2010. Significant others have the same shape and color. Each link
represents at least 100 interaction.

a higher tendency to marry within their own ethnic group,
as has been widely observed [28], [29]. In addition, this
information could be used for informing the design of data
collection configurations for ongoing or future data collection
initiatives. For example, if two features are highly correlated,
yet one of them is much “cheaper” to extract (e.g. requires
only reading the phones built-in call-log database, compared
to battery-intensive GPS scanning), it might be decided that
extracting the cheaper feature alone is sufficient, deducing the
more expensive feature using their correlation. Alternatively,
we might want to actually make sure that two correlated values
are gathered in order to strengthen the result and help deal with
noise.

Fig. 7. The prediction accuracy of the Significant Other classifier. The
vertical axis represents the percentage of correct matches. The fitted Gompertz
function is f(t) = 0.66e−0.78e−0.12t

with regression residual standard error
of 0.02762, and achieved convergence tolerance of 1.505e-06.

At this point it is interesting to mention the work of Dey
et al. [30] that have shown that people statistically carry their
phones with them much less than they might think. This might
explain why there are saturation limits in learning accuracy
of mobile phone data, as Bluetooth proximity based analyses
assume that the phone is an accurate proxy for its owner and
is located where the owner is.

It should be noted that our main goal in this study was to
investigate the learning process over time, rather than evaluate
the specific models and how they generalize. In future work we
intent to return to each of these models, evaluating it in details.
We are also continuing our investigation of the properties of
learning and prediction of human and social constructs based
on mobile phone gathered data.

While there will always be the need for the expert and
experienced “data artisan”, with the exponential increase in
accumulated data and the rise of a big-data ecosystem, there
is an imperative need to create a more accurate science and
engineering of data collection, processing, and analysis. Our
work is a building block in this larger effort.
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