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ABSTRACT
As devices move within a cellular network, they register their
new location with cell base stations to allow for the correct
forwarding of data. We show it is possible to identify a
mobile user from these records and a pre-existing location
profile, based on previous movement. Two different iden-
tification processes are studied, and their performances are
evaluated on real cell location traces. The best of those al-
lows for the identification of around 80% of users. We also
study the misidentified users and characterise them using hi-
erarchical clustering techniques. Our findings highlight the
difficulty of anonymizing location data, and firmly establish
they are personally identifiable.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

General Terms
Performance, security, experimentation

Keywords
Identification, location profile, cellular network, location pri-
vacy

1. INTRODUCTION
Mobile phone devices have become indispensable items

of everyday life, since the GSM and cellular technologies
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were introduced and became popular in the 1990s. Reliance
on them, to support business as well as leisure, is likely to
increase with the current deployment of third generation
services providing high-bandwidth data services, as well as
location based services.

In order to function, and route calls, these technologies
require the service provider to know the cell in which a mo-
bile device is present. These cells are of varying size, from a
few kilometres in low-density areas, to a few meters within
cities. This gives service providers a record of the movement
of each device, and probably its owner. This represent a se-
rious privacy threat, and previous research has explored the
public perception surrounding it [4].

Records of devices movements are routinely kept by ser-
vice providers, and often used as part of investigations by
law-enforcement. The data retention directive has been im-
plemented in some EU countries to mandate the retention
of location data, providing anyone with access to the data
a map of all mobile devices movements, at a cell granular-
ity [5].

In this work we assess the degree to which these records
are personally identifiable information. In particular we as-
sess the extent to which anonymised location records from
cell based mobile phone networks can be linked back to pre-
viously extracted user profiles. We show techniques to build
profiles based on some user’s locations, and then techniques
to match those profiles with anonymised location data.

Our approaches are evaluated using the real-world loca-
tion traces of mobile users from the MIT Reality mining
project [1]. This demonstrates that our techniques are ro-
bust to noise and artefacts present in real-world data, and
would perform well in live conditions. Our key measures of
success are the rates of correct identification of the anonymised
traces. In cases identification fails, we still manage to cluster
and order users according to how likely they are to be the
user behind the anonymised trace. We show that in most
cases the deanonymisation either succeeds or leads to only
a handful of candidate users.

Our results have a profound impact on how we perceive
cell location data. First, some location privacy approaches
rely on changing mobile identifiers quite often [2]. We show
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that the periods have to be extremely short, since it is easy
to identify a moving user within hours.

Second we demonstrate that it is difficult, if not impossible
to sanitise and anonymise location data, merely by removing
user identifiers and reducing the granularity of the location
or time. Cell locations in fact blur the exact location of
users, but a sequence of cells allows us to identify users with
a very high probability. Even sanitised location data is still
personally identifiable.

Finally naive approaches to protecting one’s privacy, such
as using two different pre-paid mobile phones, or chang-
ing mobile phone, are not likely to provide any protection
against a determined adversary. Given just the cell locations
of the devices it will be trivial to infer that they belong to
the same person, unless the actual places visited, places of
work and stay of the user change at the same time – this is
a rather extreme precaution to take merely to achieve some
privacy.

This paper is organised as follows: we first give a brief
overview of mobile phone network architectures, and how
locations of mobiles are advertised to the service providers
in section 2. In section 3 we present how to extract loca-
tion profiles for users from movement logs. Those profiles
are then used to identify further traces of movements, as
presented in section 4. In case identification fails we extract
possible groups within which a user may be by clustering
(section 5). We evaluate our approach on a live data set
and present out results in section 6. Finally we offer some
conclusions as well as avenues for future research in section
7.

2. CELLULAR NETWORKS
A cellular or GSM network consists of cells covering a cer-

tain area served by a fixed base station. The cell shape of
real cellular networks varies depending on the base station
antenna radiation pattern and each cell can have a num-
ber of neighbouring cells. Each base station is connected to
a Mobile Switching Center (MSC), which is, in turn, con-
nected to the Public Switched Telephone Network (PSTN).
All communications are mediated through the base station,
and mobile stations (i.e., mobile phones) talk with one an-
other via a base station, not directly. In general, a cellular
network can be referred to as a zone-based network. A zone
can be a Location Area (LA), as in current GSM cellular
networks, or a cell depending on the system.

The Location Management (LM) functionality of the net-
work finds out the cell of a mobile station in order to route
incoming calls in an efficient manner. Location management
involves two operations: location updates and paging. A lo-
cation update is sent by the mobile station to let the cellular
network know its current position. The mobile registers its
location with the base station, and the location databases
are modified accordingly. Paging, on the other hand, is per-
formed by the network to find the cell in which a mobile
station is located. Only location updates are of importance
to this work.

Location update schemes can be static or dynamic. In
static location update schemes the mobile stations advertise
their locations without taking into account any other user
characteristics. Some simple schemes include the Always-
Update and Never-Update, that always broadcast the mo-
bile’s location when it moves between cells or never do so
respectively. Dynamic location update schemes are defined

according to each individual user. Threshold-based schemes
trigger a location update periodically or when the mobile
crosses a certain number of cells, or moves a certain dis-
tance. It can also be triggered by the frequency of incoming
calls. Profile-based location updates only require updates
when the user is outside a certain home area, according to a
profile extracted by the network operator [6]. These profiles
are likely to be very similar to what we use for our identi-
fication procedures, and should match the user’s movement
behaviour.

3. MOBILITY MODEL AND LOCATION
PROFILES

3.1 Previous work on mobility models
We consider a cell-based GSM cellular network with a

static always-update location update scheme. In such a net-
work each mobile user registers their location with the base
station of the current cell at each cell boundary crossing.
Consequently, the network obtains a sequence of cell-ID’s.
The static always-update cell-based location scheme cap-
tures mobile users’ movement in their finest details and the
network has full knowledge of the location of users. We use
these sequences of cell-IDs per user to build profiles, as well
as to identify anonymous mobile devices.

The definition of movement history mentioned in [3] is
applied: The movement history of a mobile user is a string
‘v1 · v2 · v3 · . . . ’ of symbols of the alphabet ϑ, where ϑ is
the set of zones in the cellular network and hence vi denotes
the zone-ID reported by the ith location update. In our
approach, ϑ is the set of all cells in the network. Since the
update scheme is static always-update, the successive cell-
ID’s vi are distinct and in most cases neighbouring cells.

It is important to note that these traces could be collected
in many ways. Obviously they are available to operators in
real-time as location updates are received. These location
updates can, and are routinely, logged to optimise the us-
age of the network as well as under regimes of traffic data
retention for law enforcement purposes. The traces can also
be acquired by tampering with the mobile device of a user,
so that it records visited cell locations. An eavesdropper
can attach to a user (or vehicle) under surveillance a mo-
bile device that either transmits or records cell locations.
Finally profiles could be extracted by sampling a user’s lo-
cation through physical or CCTV surveillance, but such pro-
cesses are outside the scope of this work.

Mobility models make use of past movement traces to
build probabilistic models and predict the mobile user’s fu-
ture locations. Their key assumption is that users have some
set locations, and movement patterns that are likely to not
significantly change over time. User mobility models tradi-
tionally play an important role in designing location update
schemes, and optimizing network use. In our case, we use
mobility models to identify users. Two mobility models have
been discussed in previous work [8], [3]:

• Random Walk: This model is regularly used to model
the movements of users in a cellular network. It as-
sumes that the direction of movement is random, and
hence users visit each neighbouring cell with equal
probability. It only requires the current location to
predict the next cell occupied by a user and as such
can be seen as a memory-less movement model.
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• Markovian: In contrast to the previous model, this
approach uses a per-user profile. The Markovian mo-
bility model defines distinct probabilities for movement
from a given cell (or sequence of cells) to each of its
neighbours (or the last cell in the sequence). These
transition probabilities are dependent on individual
user movement histories.

Markovian mobility models can have a different order,
indicating the number of cells to take into considera-
tion when calculating the transition probabilities. In
the simplest case, transition probabilities represent the
probabilities of moving from a single cell to one of its
neighbouring cells. These probabilities are referred to
as one-step transition probabilities and are modelled as
an order-1 Markov chain.

In [6], the continuous-time order-1 Markovian mobility
model was used for a dynamic predictive location manage-
ment scheme in order to reduce the combined location up-
dating and paging cost. Our model will be based on a sim-
ilar Markovian model, but our objective is different. The
location profiles based on the model, are used to perform
identification in a cellular network of a mobile user based on
the location profiles of all users.

3.2 Location Profiles
In the continuous-time order-1 Markovian mobility model,

cells are treated as states of a Markov chain, and each cell
change corresponds to a state transition. A cell change of a
mobile user can occur at any time. At some time, a mobile
user moves into cell i. After it spends a dwell1 time in cell
i, it will move to one of its neighbouring cells, e.g. cell j,
with a one-step probability pi,j . Those probabilities form the
Transition Probability Matrix described below.

For each mobile station in the GSM cellular network, a
separate location profile is maintained. This profile is based
only on the cell movement history of the mobile user. The
Markovian profile of each user consists of the transition ma-
trix and its stationary distribution.

• The Transition Probability Matrix (TPM) takes a mo-
bile user’s movement behaviour and geographical fac-
tors (neighbouring cells) into consideration. For a mo-
bile user who resides within m cells, the TPM P =
((pi,j)) is an m × m matrix.
The element pi,j = Pr(Cellj |Celli),(i, j = 1, . . . , m) of
the TPM is the probability with which a mobile user
will move to cell j upon leaving current cell i, hence
0 ≤ pi,j ≤ 1. The sum of all probabilities with which a
mobile user moves to all possible (neighbouring) cells j
upon leaving cell i is 1;

Pm
j=1 pi,j = 1 for i = 1, . . . , m.

pi,j depends on the current cell i, the next cell j and
the mobile user’s movement.

TPMs for individual mobile users can be estimated
from a set of location traces. Assuming the location
update scheme is static always-update, the mobile de-
vice always updates its location on cell boundary-crossing
and never performs a location update when staying
in the current cell. Thus pi,i = 0 for i = 1, . . . , m.
The one-step transition probabilities pi,j are computed
by the relative counts “Count(Celli → Cellj)”. Then

1Time interval between successive cell changes i.e. residence
duration.

pi,j corresponds with the number of cell transitions
Count(Celli → Cellj) divided by the total number of
cell transitions out of Celli, as shown in:

pi,j =
Count(Celli → Cellj)Pm

j=1 Count(Celli → Cellj)
(1)

• The stationary Markov distribution Π of the markov
chain represents the user residence probabilities in each
cell of the cellular network. For a mobile user who re-
sides within m cells, Π will be a m × 1 vector: Π =
[π1 · · ·πm]T . The element πi = Pr(Celli), (i = 1, . . . , m)
of Π is the residence probability of a mobile user in
cell i. The sum of all user’s residence probabilities is
1;

Pm
i=1 πi = 1.

This distribution, also called the steady-state probabil-
ity vector Π, can be easily computed using the Transi-
tion Probability Matrix P by solving Π = Π×P, and
hence all stationary Markov distributions Π are user-
dependent as well. A more practical way to compute
Π is limk→∞ Pk = Π, where in practice k = 20 will
suffice.

4. IDENTIFICATION PROCESSES
The main objective of this paper is to assess how iden-

tifiable a mobile user is in a cellular network, e.g. GSM
network, based on his movements within the network, and
some known location profiles for the user population.

The full identification process is based on processing data
in two distinct periods.

• A single, possibly anonymous, user is observed and
his location information is recorded from location mes-
sages for a certain time span, referred to as the iden-
tification period. (We consider an identification period
of up to one month.)

• The movements during the identification period are
compared with the identification database containing
profiles based on a month preceding the identification
period. This comparison yields an identification indi-
cator for each possible user profile. Based on these
identification indicators, the user profile most likely to
correspond to the target user is selected.

Two different identification processes are presented and
their performances are evaluated in section 6. They both
make use of distinct first order markovian location profiles
for users, describing their past movements. Their key dif-
ference is the way they match the location information from
the identification period to those profiles.

4.1 Identification process based on Markovian
model

A new location profile is generated from the location up-
date messages sent from the device of mobile user Ux dur-
ing the identification period. The new profile is compared
for closeness with the profiles stored in the identification
database. The new profile for the target consists of a Tran-
sition Probability Matrix Px and a stationary Markov dis-
tribution Πx.

Once the location profile of mobile user Ux is generated, it
is compared with all location profiles present in the identifi-
cation database. For each mobile user Uk, (k = 1, . . . ) of the
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user population in the database, an identification-indicator
idenk is calculated:

idenk =
nX

i,j

Prx(Cellj |Celli) · Prx(Celli)

· Prk(Cellj |Celli) · Prk(Celli) (2)

=

nX

i,j

px;i,j · πx;i · pk;i,j · πk;i (3)

where n denotes the number of all possible cells in the cel-
lular network used in this research but in practice only the
cells in which mobile users Ux and Uk reside matter. The
identification index idenk compares both transition matrices
and stationary Markov distributions of mobile users Ux and
Uk.

The mobile user Uiden identified by the process corre-
sponds to the mobile user Uk with the largest value of idenk:

Uiden = arg max
k∈{1,... }

idenk (4)

The higher the value of idenk, the better profiles resemble,
meaning that the mobile users Ux and Uk have the same
cell-behaviour within the cellular network.

The performance of this identification process is evaluated
in section 6.2.

4.2 Identification process based on sequence
of cell-ID’s

The location information gathered during the identifica-
tion period is a chronological sequence of cell base stations
in the form of tower IDs. This process evaluates the likeli-
hood this sequence was generated by the different location
profiles stored in the identification database.

In this identification process, a sequence number θ is as-
signed to each transition of the sequence of cell tower IDs
observed during the identification period. If the location
sequence consists of l cell tower IDs, it contains l − 1 cell
transitions and hence θ = 1, . . . , l − 1. To compute idenk,
the one-step transition probability is looked up for each tran-
sition θ in the transition probability matrix Pk of location
profile Uk

2. We denote this probability by pθ
k. The indicator

idenk corresponds with the product of all these transition
probabilities, given by following formula:

idenk =

l−1Y

θ=1

pθ
k (5)

where l denotes the number of cell tower IDs present in
the location sequence. In case one of the transitions have a
zero probability we assign to it a very small probability (e.g.
10−8) to ensure that we never get idenk = 0.

Because each transition probability pθ
k ∈ [0, 1], the prod-

uct of them (idenk) quickly becomes very small. Conse-
quently, we use the logarithm of the product of transition
probabilities to calculate idenk, which is equivalent to the
sum of the logarithm of the probabilities:

idenk = log10(
l−1Y

θ=1

pθ
k) =

l−1X

θ=1

log10 pθ
k (6)

2Only the Transition Probability Matrix is used, and not
the stationary Markovian distribution.

The indicator idenk will always be negative because the log-
arithm is negative within [0, 1]. As mentioned earlier, it is
possible to stop the calculation of idenk earlier and look at
the intermediate values of all idenk. The mobile user with
the highest value of idenk (see formula (4)) is selected as
they have the highest cell-resemblance to mobile user Ux.

In contrast to the previous process, it is easy to vary the
length of the identification period so the performance of this
identification process will be examined for four identifica-
tion periods: one hour, one day, one week and month. The
results discussed in section 6.3 give some insight into the
correlation between the length of the identification period
and the identification performance.

5. CLUSTERING

5.1 Purpose of clusters
We use a clustering algorithm to group together mobile

users based on their cellular behaviour, or more precisely
their cell residence probabilities. Clusters are generated
among the mobile user profiles in the identification database
based on the stationary Markovian distributions.

Clustering is used to evaluate the identification process
and to understand the nature of false positives, when an in-
correct mobile user is identified. First of all, we can examine
whether the original mobile user3 is part of the same cluster
as the incorrectly identified mobile user. In those cases, the
identification process is expected to perform poorly, since
both mobile users show a similar cellular behaviour.

The percentage of these clustered incorrectly identified
users can be used as a performance measure of the iden-
tification processes: the higher this percentage, the more
expected the process to fail. Secondly, the probability den-
sity estimate function of the cosine similarity (explained 5.2)
between the original user and the corresponding user in the
identification database (the one that should have been iden-
tified) and of the cosine similarity between the original user
and the wrongly identified user out of the database is ex-
amined. The distance between these two pdf’s4 can also be
taken as a performance measure of the identification process:
if this distance is small, the cosine similarity of the incorrect
identified users is close to those of the original ‘to be iden-
tified’ users, and thus the identification process is expected
to fail and to perform poorly.

Our main goal is to keep the percentage of incorrectly
identified mobile users as small as possible. But when false
positives occur, it is acceptable to have errors when the dis-
tances are small and hence a large clustered group. All these
conclusions are discussed based on the results of the identi-
fication processes in section 6.

In the following section, we present an outline of the al-
gorithms involved in our cluster algorithm.

5.2 Agglomerative Hierarchical Clustering
Vector space model. Clusters are formed among mobile

users based on their cell residence probabilities, described by
the stationary Markovian distributions Π already computed
in the location profiles of the identification database. In our

3The mobile user out of the database corresponding to the
original user
4This equals the difference in x-values corresponding with
the pdfs’ maxima.
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case, the vector space model corresponds with the set of
stationary Markovian distributions Π of all mobile users in
our user population. This model will form the basis of the
cluster formation algorithm.

Distance matrix D. Any clustering algorithm requires
a distance metric to assess the resemblance or distance be-
tween two different objects. In our case we need a measure
of the resemblance in cellular behaviour between two mobile
users. The more similar cellular movement and residence
the users show, the smaller the distance between them. For
this purpose a symmetric distance metric is applied, i.e. the
cosine distance. The cosine distance equals one minus the
cosine similarity between two vectors. This is the cosine of
the angle between the stationary Markovian distributions Π
of both users. If the users have a similar cellular behaviour
and residence, the angle between the vectors is small and
the cosine approaches one, and hence the cosine distance
approaches zero.

In order to form clusters among the mobile users in the
user population, the cosine distance between every possible
pair of users is calculated. All these cosine distances are
stored and organised in a distance matrix D. Since the co-
sine distance metric is symmetric, so is the distance matrix.

Hierarchy of clusters. Based on the computed sym-
metric distance matrix D a hierarchy of clusters among the
mobile users is created. The agglomerative hierarchical clus-
tering algorithm is applied to assign each mobile user to a
final cluster.

Agglomerative means that initially all n mobile users form
a cluster on their own. Then clusters are aggregated until
the final state is reached, when all mobile users belong to
a single cluster. At each step a pair of clusters are merged
based on their mutual distance. The hierarchy of clusters
consists of the sets of clusters at each step of the algorithm.

Several methods can be used to select the clusters to
merge. They differ in the manner they compute mutual
distance between clusters. We use average linkage as a clus-
ter distance for our algorithm: the mutual distance between
two clusters depends on the cosine distances between all
pairs of mobile users present in both clusters. At each step,
the clusters with the smallest mutual distance are merged.
The hierarchy of clusters can easily be presented by a den-
drogram which involves a tree structure.

Optimal number of clusters. Of course, one cluster in-
cluding all mobile users is not the optimal final composition
of clusters amongst users. For this reason we stop the merg-
ing process once cluster distance reaches an optimal merge
distance. The L-method explained in [7] is used to calcu-
late this distance. In a nutshell the L-method monitors the
rate of increase of the merge distance between clusters at
each step of clustering. It ends the process when quality
of the clusters decreases meaning that clusters composed of
different objects start being merged together.

6. PERFORMANCE EVALUATION

6.1 Dataset & Evaluation method
To evaluate the performance of the two identification pro-

cesses, we used the Reality Mining dataset made available
by the MIT Media Lab [1]. The dataset consists of the be-
haviour of one hundred human subjects at MIT during the
2004-2005 academic year over the course of nine months. It
represents the largest mobile phone experiment attempted

in academia. The data was collected using one hundred in-
strumented Nokia 6600 smart phones. The information col-
lected, included call logs, Bluetooth devices in proximity, cell
tower IDs, application usage and phone status. The gener-
ated data represents approximately 500000 hours of data on
users’ location, communication and device usage behaviour.
The dataset has been anonymized and made available to
the academic community. We acknowledge the fact that the
dataset is limited to one hundred users, but the aim of our
research is to show that identification is possible and should
be considered as a privacy threat.

For our experiments we only need the data concerning
users’ location. This data consists of the entry and exit
time in each cell for each mobile user in chronological or-
der, including the cell tower ID. It can be interpreted as
the information gathered from the location update messages
sent on basis of a static always-update scheme in our pre-
sumed cell-based network. This is slightly different from the
current GSM network implementations, which is a location
area (LA)-based network with the static location area up-
date scheme, but the principle of our work remains the same.

The identification performance of both identification pro-
cesses discussed in section 4 is evaluated. During two differ-
ent time periods known as the identification periods, namely
‘December 2004’ and ‘January 2005’, anonymised location
data is captured from the mobile user who we want to iden-
tify (further referred to as original mobile user). These
anonymised location traces are matched to the identifica-
tion database consisting of the location profiles of all mobile
users covering a time span of the month preceding the iden-
tification process, namely ‘November 2004’ and ‘December
2004’ respectively.

The evaluation of the correctness of the identification pro-
cesses involves the calculation of the percentage of the orig-
inal mobile users who are identified correctly. Profiles for
some months are missing, due to missing data, and the eval-
uation excludes those profiles. We also look at the prob-
ability density estimate functions of the cosine similarity
between the original user and the correctly identified user
out of the database against all other non-identified users of
the database. This cosine similarity is computed using the
stationary Markovian distribution of the original user and
those of the mobile users in the identification database.

In some cases, the identification process fails, and an in-
correct mobile user is identified. It is expected that the
identification process is misled when the original and the in-
correct identified user have very similar movement profiles.
Such users can be clustered together. As mentioned earlier
in section 5.1, this can be used as a performance measure
for an identification process. It is possible to look at the ex-
act cosine distance between both the original user and the
incorrectly identified user. The smaller this value, the more
similar the users are.

It is also interesting to look at the probability density
estimate functions of the cosine similarity between the orig-
inal user and the corresponding user in the identification
database (the one that should have been identified) and of
the cosine similarity between the original user and the iden-
tified user out of the database. The distance between these
two pdf’s5 can be taken as a performance measure as well.
If this distance takes on small values, the cosine similarity of

5This equals the difference in x-values corresponding with
the pdfs’ maxima.
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Table 1: Performance

Dec 2004 Jan 2005

38.89% 37.5%

Pr(IDJan2005|IDDec2004) 48.276%

Table 2: Clustered incorrect identified users

Dec 2004 Jan 2005

88.636% 74.286%

the incorrect identified users is close to those of the original
‘to be identified’ users, and thus the identification process
performs poorly but it is expected that the process fails. We
see that a large part of the incorrectly identified mobile users
is situated in the same cluster as the actual users.

6.2 Identification based on Markovian model
First we evaluate the performance of the Markovian iden-

tification process as described in detail in section 4.1.

6.2.1 Evaluation of correct identification
Table 1 gives an overview of the percentages of the cor-

rectly identified mobile users for both periods. In both cases,
more than a third of the original users are correctly identi-
fied: Pr(IDDec2004) = 0.39 and Pr(IDJan2005) = 0.38.

A comparison can be made between the correctly iden-
tified users in both periods ‘December 2004’ and ‘January
2005’. It is not always the case that a mobile user who is cor-
rectly identified during one period is also identified during
another period. In general, 48.276% (also shown in table 1)
of the correct identified mobile users are present in both
periods: Pr(IDJan2005|IDDec2004) = 0.48.

Figure 1 shows the probability density estimate functions
of the cosine similarity between the original user and the
correct identified user out of the database against all other
users of the database for both time periods. The pdf6 of
the correct identified user is centered around high values of
the cosine similarity, in contrast with the pdf of all other
users which is mainly centered around very low values. This
behavior is expected because the correct identified user nor-
mally is the one with the highest cosine similarity among all
other users in the same user population. It can be clearly
observed that the two pdf’s have different shapes. The den-
sity function of the identified users has higher variance since
fewer observations are available than for the function of the
other users.

6.2.2 Evaluation of incorrect identification
Table 2 gives an overview of the percentage of incorrectly

identified users who are situated in the same cluster as the
original user. For both periods, three-quarters or more in-
correctly classified users exhibit this characteristic. We call
such misidentifications ‘clustered’, in contrast with wrongly
identified users not belonging to the same cluster, that we
call ‘Non-clustered’.

We examine the cosine distance between the profile of
wrongly identified users of those two groups, and the cor-
rect user. The cosine distance acts as a parameter for how

6probability density function

Table 3: Comparison probability density estimate functions

Dec 2004 Jan 2005

CSintersect 0.797 0.7736

Pr(CSintersect < CSOr < 1) 0.5754 0.3942

Pr(CSintersect < CSId < 1) 0.3573 0.2165

pdf’s distance 0.10832 0.10902

close the mobile users resemble. Each pair of the clustered
group is closely related and shows similar cell movements
corresponding to the small cosine distance. In these cases
it comes as no surprise that the identification process fails.
The location profile of the identified user belonging to the
non-clustered group, which covers fortunately less than a
quarter of the wrongly identified users, differs significantly
from the original user (corresponding to a larger cosine dis-
tance), thus the failure of the identification is unexpected.
For this groups we expect a better identification process to
lead to better identification results, as it is the case for the
second identification process.

Figure 2 shows the probability density estimate function
of the cosine similarity of the incorrect identified mobile user
and the user who should have been identified as the origi-
nal user, for both time periods. The former pdf is centered
around smaller values of the cosine similarity than the lat-
ter one. The small distance between the two pdf’s, shown
in table 3, is explained by looking at table 1, table 2 and
considering the cosine distances discussed above. In both
time periods, approximately two thirds of the mobile users
are incorrectly identified, of which three quarters or more are
situated in the same clusters as their original user. Moreover
for this clustered group the cosine distances with the origi-
nal user take on small values7. It is clear this identification
process has difficulties distinguishing mobile users with simi-
lar cellular behaviour, with the clustered group representing
more than three quarters of the mis-identified users.

This observation can be strengthened when looking at the
intersection of both pdf’s, denoted by CSintersect. The sur-
face of the pdf between the values CSintersect and 1 for CS
corresponds with the probability that CS lays in that inter-
val:

R 1

CSintersect
pdf(CS)d(CS) = Pr(CSintersect < CS < 1).

In figure 2, surface ‘1’ corresponds with Pr(CSintersect <
CSOr < 1) and surface ‘2’ with Pr(CSintersect < CSId < 1).
Table 3 gives an overview of these probabilities for both
pdf’s. The smaller the distance between the pdf’s, the closer
these probabilities are, the more overlapping the surfaces
are and hence the less distinguishable the process is and the
larger the clustered group within the false positives.

6.3 Identification based on sequence of
cell-ID’s

We evaluate our second identification process laid out in
detail in section 4.2. For this process it is easy to vary the
length of the identification period. Therefore we examine
its performance for four different identification periods: one
hour, one day, one week and a month. Increasing the identi-
fication periods results in better identification performances.
The ‘one month’ period is discussed in detail for comparison
with the previous identification process.

7which corresponds to large cosine similarity: CS = 1−CD
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(a) Dec 2004 (b) Jan 2005

Figure 1: Probability density estimate function of cosine similarity of correct identified users versus all other users

(a) Dec 2004 (b) Jan 2005

Figure 2: Probability density estimate function of cosine similarity of incorrect identified users versus original user

Table 4: Performance

Dec 2004 Jan 2005

77.273% 87.755%

Pr(IDJan2005|IDDec2004) 64.286%

6.3.1 Evaluation of correct identification
As can be seen in table 4, more than three quarters of the

original mobile users are properly identified: Pr(IDDec2004) =
0.77 and Pr(IDJan2005) = 0.88. Moreover, if one compares
the correct identified users in both periods, there is an over-
lap of 64.286% (also shown in table 4):
Pr(IDJan2005|IDDec2004) = 0.64. This greatly improves on
the previous identification process.

Table 5 shows the identification performances for the four

Table 5: Performance: all four identification periods

Dec 2004 Jan 2005

one hour 40.91% 48.98%

one day 65.15% 65.31%

one week 74.24% 75.51%

one month 77.27% 87.76%

different periods in which anonymised location data of the
original person is gathered. The longer the identification pe-
riod, the more original users will be properly identified. If
a performance of three quarters is sufficient, then an iden-
tification period of ‘one week’ is a good choice. There are
diminishing returns in observing users for longer periods,
since the probability of correct identification grows slowly.
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(a) Dec 2004 (b) Jan 2005

Figure 3: Probability density estimate function of cosine similarity of correct identified users versus all other users

Table 6: Clustered incorrect identified users

Dec 2004 Jan 2005

60% 40%

Figure 3 shows the probability density estimate functions
of the cosine similarity between the original user and the
correctly identified user out of the database against all other
users of the database for both time periods. The same re-
marks and conclusion can be made as mentioned in 6.2.1.
In this case, the correctly identified user is the one with the
highest cosine similarity among all other users in the same
user population, and each correct identified user corresponds
to all other non-identified users.

6.3.2 Evaluation of incorrect identification
Table 6 shows the percentage of the incorrect identified

users who are situated in the same cluster as the original
user. The percentages for both periods are smaller than
those of the previous identification process. Fewer incorrect
identified users show a similar cellular behavior with the
original ‘to be identified’ user.

As before we can divide mis-identified users into clustered
and non-clustered groups, and obtain the cosine distances
between the real user and the mis-identified user. After com-
parison with the one of the previous identification process,
the cosine distances have slightly larger values. This can be
explained by the fact that the clustered group has become
smaller and that the identification process performs better
(it is capable of distinguishing better between mobile users
with similar cellular behaviour.) As a result the similarity
between incorrectly identified and original users is weaker.

Figure 4 shows the probability density estimate function
of the cosine similarity of the incorrect identified mobile user
and the one of the user who should have been identified cor-
responding to the original user for both time periods. Again
the former pdf is centered around smaller values of the co-
sine similarity than the latter one, but the distance between

Table 7: Comparison probability density estimate functions

Dec 2004 Jan 2005

CSintersect 0.6996 0.7407

Pr(CSintersect < CSOr < 1) 0.687 0.379

Pr(CSintersect < CSId < 1) 0.1926 0.1721

pdf’s distance 0.15467 0.34562

both pdf’s (shown in table 7) is slightly larger in comparison
with figure 2 and table 3. This can be explained by look-
ing at tables 4 and 6 and considering the cosine distance
discussed above. In both periods, approximately one fifth
of the mobile users are incorrectly identified. Out of those
about half is not situated in the same cluster as the original
user (non-clustered group), and moreover the corresponding
cosine distances take on larger values. As mentioned earlier,
this distance can be taken as a performance measure. Al-
though this distance has increased relative to the previous
process, the current identification process performs better
since it distinguishes better between similar users’ cellular
behaviours who belonged to the clustered group of the pre-
vious identification process.

Our conclusions can be strengthened when looking at the
intersection of both pdf’s, denoted by CSintersect. In figure 4,
surface ‘1’ corresponds with Pr(CSintersect < CSOr < 1) and
surface ‘2’ with Pr(CSintersect < CSId < 1). Table 7 gives an
overview of these probabilities for both pdf’s. The larger the
distance between the pdf’s, the furhter these probabilities
are, the less overlapping the surfaces are and hence the larger
the non-clustered group for which the failure of identification
is unexpected. This can be confirmed by comparing tables 3
and 7 and figures 2 and 4.

6.4 Performance comparison
Table 8 gives a summarized overview of the performance of

both identification processes. Table 9 shows the percentage
of the correct identified mobile users by the process based
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(a) Dec 2004 (b) Jan 2005

Figure 4: Probability density estimate function of cosine similarity of incorrect identified users versus original user

Table 8: Performance comparison

Identification process based on . . . Markovian model Sequence of cell-ID’s

Period of time Dec 2004 Jan 2005 Dec 2004 Jan 2005

Performance (%) 38.89 37.5 77.273 87.755

Clustered incorrect identified users (%) 88.636 74.286 60. 40.

Unexpected group (%) 6.9445 16.0713 7.347 9.0908

Table 9: Comparison correct identified users

Dec 2004 Jan 2005

76.923% 88.235%

on Markovian model who also are properly identified by
the process based on sequence of cell-ID’s. Table 10 shows
the percentage of clustered mobile users that are incorrectly
identified by the process based on the Markovian model but
are properly identified by the process based on sequence of
cell-ID’s. The following observations can be made:

1. The identification process based on the Markovian model
performs poorly. Slightly more than a third of the orig-
inal mobile users can be correctly identified. Of the re-
mainder, which involves the incorrect identified users,
a large part (around 80%) is clustered with its original
user due to similar cellular behavior and corresponding
location profile.

2. The identification process based on the sequence of cell-
ID’s performs well. Around 80% of the original mobile
users can be properly identified, and a smaller part
(around 50%) of the incorrect identified users is clus-
tered with its original user.

3. In both periods of time, around 80% of the users iden-
tified by the process based on the Markovian model
will again be properly identified by the process based
on the sequence of cell-ID’s (table 9).

Table 10: Correct identified clustered users

Dec 2004 Jan 2005

71.795% 76.923%

4. In both periods of time, around three quarters of the
users that are incorrectly identified (and clustered) by
the process based on the Markovian model, will be
properly identified by the process based on the se-
quence of cell-ID’s (table 10).

Combining these observations together, one can draw the
following conclusion: The identification process based on
the sequence of cell-ID’s is more precise than the one based
on Markovian model. The former process is able to distin-
guish better the incorrectly identified user from the original
user when they are situated in the same cluster, in other
words it distinguishes better mobile users with similar cel-
lular behaviour. To be more precise, the former process
identifies around 80% of the correct identified users by the
latter process, and in addition properly identifies around
three quarters of the clustered incorrect identified users by
the latter process. This causes the percentage of clustered
incorrect identified users to be smaller, which in turn causes
the distance between the pdf’s to increase.

We expect the better process to fail mainly on users that
have highly clustered patterns of movement. This is not the
case for the process based on sequence of cell ID’s, which
performs better, but has a smaller clustered group of mis-
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identified users. One of the reasons for this discrepancy is
the low number of false positives, that makes it difficult to
evaluate whether users in the same cluster are more or less
likely to be mis-identified than users in different clusters. At
first sight it seems that the percentage of user mis-identified
from the same cluster is lower than for the process based on
Markovian model (with a large number of false positives) –
a counter-intuitive result. This point requires further inves-
tigation.

Another reason for the lower fraction of clustered mis-
identified users could be that the clustering is misleading: it
takes into account similarity using the stationary distribu-
tion, which is a very naive metric compared with the prob-
ability of transition metric used by the best identification
process. Maybe it is the similarity between users that is
‘wrong’ and not the identification process, i.e. for a more re-
fined clustering distance metric the mis-identified users may
actually appear far (not close). More work would be required
to look at this.

When looking at table 1 and 5, one can clearly notice that
the performance of the identification process based on the
sequence of cell-ID’s with the period ‘one hour’ already is
better than the performance of the process based on Marko-
vian model with the period ‘one month’.

As mentioned earlier, the distance between the probabil-
ity density functions of the incorrect and the corresponding
original user can be taken as a performance measure. Al-
though the main goal is to keep the number of false positives,
i.e. incorrect identified mobile users, as small as possible,
they do occur. In that case, an identification process is ex-
pected to perform poorly or to fail when a large part of the
false positives belong to the clustered group.

When looking at the non-clustered group, where the pro-
cess is not expected to fail, we want to keep this group as
small as possible. The percentage of all mobile users who be-
long to this group, referred to as the unexpected group, can
be computed as the percentage of non-clustered incorrect
identified mobile users of the percentage of all incorrect iden-
tified mobile users: %unexpected = %unclustered∗%falsePositives.
Actually, the main goal is to minimize the number of false
positives while minimizing in parallel the unexpected group
as well. As can be clearly seen in table 8, the identification
process based on sequence of cell-ID’s is best at this task.

7. CONCLUSION
We have demonstrated that it is possible to build profiles

of users’ movements based on GSM location data, that make
it possible to identify those users in a subsequent period
with great accuracy (about 80% of the time.) The location
profile models used are simple first-order markov chains. An
obvious future avenue of research is to refine those models
to increase the identification rate, by incorporating time or
longer cell histories.

This work conclusively demonstrates that removing iden-
tifiers from location information, or merely blurring the spa-
cial resolution, does not eliminate the danger or de-anony-
mization. It is likely that longer traces can still be mapped
to profiles and re-identified. This has far reaching conse-
quences for location privacy systems, as well as the pro-
tection that has to be afforded to stored location data as
personally identifiable information.

These results also shed light on the way users price their
location privacy, as studied in [4]. It was found that the

payment sought to disclose twelve months of location infor-
mation was much smaller (about twice) than the payment
for a single month of data. Users may have an intuitive un-
derstanding that one month of location data already leaks
the most important locations in their lives: their home, place
of work or study, and their usual social spaces. It is rational
to expect less payment for subsequent months, since the pro-
filer learns little new information – in fact the information
gathered in one month is so rich that it can be used to iden-
tify users for a long time after, as our results demonstrate.
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