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Abstract

Service providers as we know them nowadays are the

always-on “static” web service providers, that aim at Five9

availability (99.999%). Formal, or de-facto, standards,

such as WSDL and BPEL, have become technology en-

ablers for the easy discovery, use and coordination of such

services. However, we envisage tomorrow’s services to be-

come increasingly pervasive, being deployed within build-

ings, transport systems, markets, as well as people portable

devices. Such services will be, by their own nature, sim-

ple and fine grained; as a consequence, service composi-

tion will become crucial to deliver rich functionalities that

satisfy end users requests. Composing services in mobile

environments opens up significant challenges. In particu-

lar, the Five9 availability assumption no longer holds: the

higher the dynamic nature of the environment, the higher

the chances that services will move out-of-reach before the

composition completes, causing the service as a whole to

fail. We argue that, in order to enable the successful com-

pletion of compound services, the reliability of the compo-

sition must be measured and reasoned about. In order to do

so, we propose to dynamically deploy a prediction model

to estimate the duration of colocation between component

services. These estimates are fed in input to a service com-

position semantics reasoner, which then autonomically se-

lects those providers, within the current environment, that

maximise the chances of successful compound service com-

pletion. We demonstrate the positive impact that the relia-

bility reasoning has onto the ratio of successfully completed

compound services in a typical human movement scenario.

1 Introduction

Two major trends have been observed in recent years: the

enormous evolution of mobile technology, and the transfor-

mation of the Internet user from consumer to producer of

content. Portable devices (e.g., 3G mobile phones, portable

digital assistants, etc.) have seen their computing capabili-

ties (e.g., processing power and memory availability) grow

according to Moore’s law. Additional functionalities, such

as digital cameras, MP3 players, GPS receivers, and the

like, have been integrated on such devices, together with

a variety of wireless network technologies of increasing

bandwidth (e.g., Bluetooth 2, Zigbee, WiFi and WiMax),

enabling the on-the-fly creation of networks of devices in

proximity. In parallel, the Internet has seen a proliferation

of blogs and personal content spaces, revealing a transfor-

mation of users from traditional consumers to active pro-

ducers of content, thus becoming shapers of what the Web

has to provide.

It will not be long before these two trends will converge,

thus creating an integrated environment where, besides tra-

ditional services delivered by highly powerful server ma-

chines accessible via wide area networks (Figure 1 (a)),

new services and content will be offered by users to users

while on the go, via their portable devices (Figure 1 (b)). A

user may, for example, access an information service made

available locally within a building, she may use the navi-

gation system of another user in reach, in exchange for her

higher bandwidth Internet connectivity, and so on. These

fine grained services, attached to people and the environ-

ment, will need to be composed to deliver more sophisti-

cated functionalities to the end user.

In order to give users a positive mobile experience, such

composite services will have to be perceived by the user as

supplied by a unique entity, that is reachable and available

for the duration of the service, despite the fact that services

are actually mobile to each other. We propose to achieve

this goal by means of a service composer, an entity that rea-

sons about the mobility of service providers and consumer,

in order to estimate the overall reliability of the composi-

tion. Only compositions that are considered reliable will

then be executed, in order to minimise the number of failed

attempts.

We first describe a scenario that exemplifies a variety of



Internet

AD Tags

Viral

Advertisers

AD Beacon

Servers

Local Profiler

(a) Today (b) Tomorrow

Figure 1. Paradigm Shift in Service Delivery

mobile service compositions (Section 2). We then present

our service composition model (Section 3), which consists

of two key components: a mobility predictor component, es-

timating the duration of colocation between component ser-

vices, and a semantic reasoner component, that uses these

colocation estimates to select those services, within the cur-

rent environment, that provide the highest reliability to the

composition. We demonstrate the positive impact that the

mobility reasoning has onto the ratio of successfully com-

pleted compound services, in a typical human movement

scenario (Section 4). We compare this work with ongoing

research in this domain (Section 5), before concluding and

discussing out future directions of research (Section 6).

2 Scenario

Let us consider a user Alice, who owns a next genera-

tion mobile phone, whose basic and enriched functionalities

(e.g., phone calls, messaging, navigation, etc.) are delivered

by smartly composing the services available at a given in-

stant.

Alice has installed on her phone the Smart Media Player

application, an application streaming music and video for

free from other devices, mocking the functionalities of radio

and TV channels. Advertisements are injected from time

to time, either interrupting the music/video streaming, or

by means of interactive banners. The content to be played,

as well as the adverts to be shown/reproduced, are selected

based on what is currently available in the environment, tak-

ing into consideration Alice’s profile. For example, adverts

can be gathered from Internet services, when connectivity

is available, as well as local advert broadcasters.

Alice leaves her office and walks to the nearest tube sta-

tion. She is listening to some music played by her Smart

Media Player. As she gets on the tube, she looses global

connectivity, so the Smart Media Player application has to

elect new service providers for music content. In order to

do so, it first has to fetch Alice’s profile, and to examine

what content and content sources are now available in the

new environment. On the basis of those, the Smart Media

Player elects the items to be played next, and streams them.

This simple scenario describes a variety of mobile ser-

vices and introduces a variety of composition semantics.

For example, the media content selector and the advertising

service both require to collect Alice’s profile and context

first; as such they need to be composed sequentially (in se-

quence) to an eventual context-aware user profiling service:

profilingService seq content&advertService

Depending on the actual context and user preferences, ad-

vertising may be shown or played, either in parallel to the

content selection and reproduction service, or subsequent

to it. In order to enable the selection of one or the other

strategy, a choice composition semantics will be needed.

The compound service content&advertService can then

be broken into:

choice < guard condition > (
(contentSelector seq advertisingService),
(contentSelector parallel advertisingService)

)

The Smart Media Player updates the list of the next-to-come

songs or videos at a regular basis, so that the overall compo-

sition loop is started again. The full composition semantics

of the Smart Media Player can thus be described as follow:

loop < iterator, guard condition > (
profilingService seq (

choice < guard condition > (
(contentSelector seq advertisingService),
(contentSelector parallel advertisingService)

)
)

)



As the above scenario shows, pervasive services (e.g.,

Smart Media Player) are often compound services, provided

by aggregating more basic functionalities according to a va-

riety of semantics (e.g., sequential, parallel, choice, loop,

etc.). Some of these services will be local to the client’s

device (i.e., the device who is consuming the compound

service), while others will be available from a combination

of stationary providers (e.g., those embedded in the local

space) and mobile providers (e.g., those provided by other

people personal devices). Given the dynamicity of the tar-

get scenario, with services appearing and disappearing all

the time as perceived by the client’s device, it becomes cru-

cial to: (1) reason about the providers’ movement relative to

the client’s device; (2) select those providers that will max-

imise the chances of a successfully-completed compound

service. In the next section, we present a service composi-

tion framework that supports this type of run-time reasoning

and selection.

3 Service Composition Framework

In order to enable mobile users to seamlessly and suc-

cessfully consume compound services while on the move,

they must be given the impression of being interacting with

a monolithic, local service. We propose to do so by means

of a run-time service composition framework that takes

care of finding, composing, and coordinating those services

needed by the composition. Such services can be hosted by

a mixture of stationary and mobile devices. The exact topol-

ogy of services making up a composition varies depending

on the current environment and is completely hidden to both

application engineers and end users. We first provide an

overview of the composition framework as a whole (Sec-

tion 3.1), before focusing on the main contribution of this

paper, that is, a service discoverer component (Section 3.2)

that selects those services, among those currently available,

that maximise the reliability of a composition. It does so

by reasoning about the mobility of individual services (Sec-

tion 3.2.1) with respect to the client’s device, and the se-

mantics of the composition (Section 3.2.2).

3.1 Overview

An overview of our composition framework is provided

in Figure 2. As shown, it consists of four main modules: the

Service Manager component is the access point to the com-

position framework. It provides an interface to request ser-

vices, leaving the invoking application unaware of whether

the requested service is single or compound, and whether

it resides on the same device or it is accessible from other

devices in the proximity (in particular, at a single hop dis-

tance).

Application
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Figure 2. Composition Framework

Upon receiving a request for service s, the Service Man-

ager invokes the Service Analyser, whose goal is to ‘under-

stand’ the request: more precisely, the analyser decomposes

s into component services s1, s2, . . . , sn, and returns a com-

position semantics for them (e.g., s1 seq s2 seq . . .seq

sn). Different decompositions are possible; the analyser re-

turns the one that relies on the minimum number of compo-

nents, and alternative decompositions are tried only if previ-

ous ones were not successful (i.e., providers were not found

in the environment). In this paper, we assume a pre-defined

taxonomy exists to map a requested service s to a decompo-

sition s1, . . . , sn with associated semantics (e.g., [13]); this

taxonomy could be either universal (and built, for example,

on OWL-S) or can be specific to a domain. The analyser

is also responsible for annotating the decomposition with

‘aspects’, that is, entry gates in the execution flow where a

re-assessment of the current environment should take place

(with potential re-biding of services - see below) before the

service execution proceeds. For example, a possible aspect

within the Smart Media Player compound service described

in Section 2 is the entry to the loop.

The Service Manager then passes the annotated decom-

position to the Service Discoverer component, whose main

goal is to choose providers p1, . . . , pm, among those avail-

able in the current environment, that will satisfy the request

(i.e., that will be able to deliver services s1, . . . , sn) and that

will maximise the chances of successful service comple-

tion. Note that the binding between services and providers

is ‘consolidated’ at each entry gate in the decomposition,

and it is expected to remain stable only until the next entry

gate in the flow: with reference to our example, whenever a

new loop is about to start, providers of media content and of

the adverts will be chosen by the discoverer, and they will

be expected to remain available until the next aspect, that is,

the next loop iteration.

Finally, the Service Manager passes the service decom-

position and the selected providers to the Service Coordi-

nator who is then in charge of executing the request. If,

at execution time, one or more providers become no longer

available, the Service Coordinator notifies the Service Man-
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Figure 3. Service Discoverer Component

ager that, depending on the annotated decomposition, de-

termines if the overall service can still be carried on (e.g.,

within a given time limit) or if a failure must be reported.

The reminder of the paper is devoted to describing the

reasoning performed by the Service Discoverer component

(Section 3.2), and to demonstrate experimentally how such

reasoning maximises compound service completion success

rate (Section 4).

3.2 Service Discoverer

The Service Discoverer module is responsible for the se-

lection of the providers (or services instances), within the

current environment, that will be relied upon to carry out

the composition. Its goal is to determine a binding that will

maximise the probability of compound service completion.

In this paper, we do not consider QoS reasoning: while im-

portant, we believe that the ability to identify providers that

will remain available for the duration of the service comes

first, with QoS to be leveraged on top.

As illustrated in Figure 3, the Service Discover uses two

main components to elect the service instances for a compo-

sition: the Mobility Predictor and the Semantic Reasoner.

The former estimates for how long a given provider will

remain colocated with the client’s device (where the com-

position framework is running); the latter then uses these

predictions, together with the specific composition seman-

tics, to determine if a composition can be attempted and, if

so, what instances to rely upon.

3.2.1 Mobility Predictor

The main goal of the Mobility Predictor is to estimate for

how long a provider will remain directly connected (i.e.,

within single hop distance) to the Service Composer, and

thus will be available to participate in the composition (i.e.,

we make the assumption that if a service provider is busy

serving others client, it will not send a beacon to notify its

presence).

The basic observation underpinning this work is that

people show a high degree of regularity in their activities,

often traveling to/from work on the same train, follow-

ing routines during their working days, visiting the same

pub or restaurant, and so on. Although the number of un-

known devices we encounter will always be high, a non-

negligible set of devices, either stationary or mobile, will be

re-encountered regularly [8]. Based on this assumption, we

have defined a simple yet effective prediction mechanism

that aims at learning human behavioural patterns from past

activities: for every day of the week d, and for every hour h

within a day, a device i logs the duration of its encounters

with any another device j. We use the symbol δi,j(d, h) to

refer the historical colocations between devices i and j in

the specific time slot (d, h). Recording colocation statis-

tics incurs a small amount of storage and processor usage;

this amount scales linearly with each additional host that is

tracked. To reduce this overhead, only records about famil-

iar strangers, that is, hosts we have been encountering with

at least a certain frequency, can be kept.

Given two service instances i and j, and the current time

t which falls in slot (d, h), the predicted duration of coloca-

tion is then computed as follows:

(1) σi,j(t) =























0
if avg(δi,j(d, h)) ≤ α· stddev(δi,j(d, h))

avg(δi,j(d, h)) − α· stddev (δi,j(d, h))
otherwise

Intuitively, the higher the variation in past colocation dura-

tions, the lower the estimate made. In general, we prefer to

underestimate the duration of colocation, rather than over-

estimating it, to later minimise the number of initiated but

then failed compositions; we thus always set parameter α to

be a positive constant value, whose impact on service com-

pletion rate will be analysed experimentally in Section 4.

3.2.2 Semantic Reasoner

In order to deliver a compound service s, the Service Dis-

coverer module could use the colocation predictions com-

puted by the Mobility Predictor in order to decide what ser-

vice providers to bind to within the current environment, in

order to have high probability that the composition will suc-

cessfully complete (i.e., that no component will become un-

reachable during service delivery). For example, if n com-

ponent services are needed to deliver s, and if it is estimated

(e.g., from past experiences, from Service Descriptors, etc.)

that it takes up to ∆t seconds for s to complete, then the n

instances p1, . . . , pn would be chosen so that each of them

is estimated to remain colocated with the client’s device at



least ∆t from the time the service request begins. In other

words, we could require each component service to remain

available for the whole duration of the composition.

This requirement may become quite stringent in highly

dynamic environments, especially for compositions requir-

ing the participation of many components and/or for long

periods of time, resulting in many service deliveries not

even being attempted. However, not all services are indeed

needed for the whole duration of the composition. For ex-

ample, if two services s1 and s2 are sequentially composed

(i.e., s1 seq s2), and it is estimated that each will take 30

seconds, then s2 will be needed for the whole duration of

the composition (i.e., 60 seconds) while s1 will be needed

only for the first 30 seconds. The semantics of the com-

position quite precisely identify when and for how long a

specific service instance is going to be needed. Based on

colocation predictions, the Semantic Reasoner component

thus leverages the specific composition semantics in use to

set minimum colocation requirements for each service in-

stance si individually.

For example, given n services composed sequentially

s1 seq . . . seq sn, and assuming each service si takes ∆ti
seconds to execute, then the minimum colocation require-

ment for any provider of si is ∆t∗i = ∆ti +
∑j<i

j=0
∆tj +

∆tj,j+1, where ∆tj,j+1 is the maximum tolerated interval

of time between the completion of sj and the launch of

sj+1. If services are composed in parallel, then their min-

imum colocation requirement is ∆t∗i = ∆ti instead. The

complete set of composition semantics, and relative colo-

cation requirements, can be found in a separate technical

report [7].

The Semantic Reasoner on client device c decides

whether to launch a composition, and (if so) on what in-

stances to rely on, using Algorithm 1. To begin with,

providers of services needed in the composition are found

in the environment (step 1). A prediction of the remaining

colocation between each of these providers and the client’s

device is computed, and only those providers who are ex-

pected to remain available for the minimum colocation re-

quirement are kept (step 2). If more than one provider is

available for a given component si, then the one with the

longest predicted colocation time will be selected (step 3).

If, at the end of the process, set P contains one provider for

each component si ∈ s, then the composition is attempted.

Note that the minimum colocation requirement could be

set even looser than what we have described thus far. In Al-

gorithm 1, we require providers of all component services

to be available at the beginning of a composition, for the

service to be started; however, depending on the composi-

tion semantics (e.g., sequential), some services may only

be needed at a later stage. A composition could thus be

started even if instance si is currently not available, pro-

vided that there is a high probability that si will become

Algorithm 1 Service Components Selection Algorithm

Input Parameters

- semantics de-composition of service s into

{s1, . . . , sn};

- ∆ti the maximum time to execute each component

service si (i.e., obtained from monitoring past expe-

riences, from Service Descriptors, etc.);

- ∆t∗i the interval of time si is requested to be avail-

able for, as estimated based on the composition se-

mantics;

- ∆ti,j the maximum tolerated interval of time be-

tween the completion of si and the launch of sj .

Returns: set P of service instances {p1, . . . , pn} to bind

to, to deliver the composite service s.

P = ∅
{Step (1) - Functional Matching}
F = ∅
for all pk in the environment do

if sk delivered by pk belongs to s then

F = F ∪ {pk}
end if

end for

{Step (2) - Stability Filtering}
S = ∅
for all si ∈ s do

if ∃pk ∈ F | (sk ≡ si) ∧ (σc,k ≥ ∆t∗k) then

S = S ∪ {pk}
end if

end for

{Step (3) - Stability Maximisation}
for all si ∈ s do

pk = maxσc,j{pj |pj provides service si ∈ S}
P = P ∪ {pk}

end for

return P

available by the time it is needed. Such probability could be

computed based on: the maximum waiting time by which

si will be needed (e.g., for services composed sequentially,

the time before si is needed is
∑j<i

j=0
∆tj + ∆tj,j+1); and

historical/contextual information about what services where

available at a given place and time in the past. If histor-

ical information were not available, an estimate could be

obtained by looking at the dynamicity of the mobile envi-

ronment (the average growth per second of the number of

services available, as perceived by the service composer),

and the homogeneity of the available services. We have not

yet experimentally evaluated this looser version of the se-

lection algorithm, and we thus leave its details outside the



scope of this paper.

In the next section, we experimentally evaluate the accu-

racy of our prediction technique, and demonstrate the gain

obtained in terms of successfully complete composite ser-

vices in realistic mobile environments.

4 Evaluation

4.1 The Dataset

In order to evaluate our service composition model in a

realistic pervasive environment, we have used the connec-

tion logs from real life Bluetooth devices, available from

the CRAWDAD [1] resource archive. In particular, we have

elected the MIT Reality Mining dataset [2] as our refer-

ence scenario. This dataset contains the Bluetooth id of de-

vices in proximity, as detected by one hundred Nokia 6600

phones, which were given to MIT staff and students, over a

period of nine months. Each phone had been configured to

scan the environment and log colocated devices (i.e., within

one hop distance). The final dataset contains in excess of

500,000 hours of data about human activity.

The reasons we focus on this dataset are many: to be-

gin with, unlike many real data sets, this one is big enough

to enable accurate evaluation of our model, without having

to rely on synthetic mobility traces (e.g., random mobility).

Second, it has been collected in what we consider a typical

setting for the consumption of composite services (i.e., a

university campus, with some services being available cen-

trally, others from devices embedded in buildings, and oth-

ers still from peer Bluetooth devices). Finally, the dataset

spans a long enough period of time for temporal behavioral

patters to emerge, and for our model to learn and exploit

them.

4.2 Simulation Setup

We have conducted two main sets of experiments, both

on top of the previously described dataset: the first set

aimed to assess the accuracy of the Mobility Predictor com-

ponent, while the second set aimed to quantify the gain ob-

tained by the Semantic Reasoner component, in terms of

successfully completed compositions.

Mobility Predictor - In order to assess the accuracy of

the Mobility Predictor component, independent of any ser-

vice composition, we have conducted the following exper-

iment. Whenever two devices i and j entered within con-

nectivity range, and thus an event was logged within the

MIT Reality Mining dataset, we have predicted σi,j(t), that

is, for how long device i expects to remain colocated with

device j, based on the colocation statistics observed up un-

til time t (see Formula (1) - Section 3.2.1). We have then

compared our estimated colocation duration with the actual

one and, in case our estimate was lower or equal to the ac-

tual one, we recorded a success, otherwise we recorded a

failure. Note that, in our framework, it is important not to

overestimate colocation durations, to minimise the risk of

started but uncompleted compositions due to service/device

departure. Nonetheless, an overly conservative model that

excessively underestimate colocations would inhibit com-

positions that would otherwise been successful. For each

successful (under)estimation, we have thus quantified the

actual percentage of underestimation as:

(2)
actual colocation time − estimated colocation time

actual colocation time

The experiments have been executed for different values of

α (see Formula (1) - Section 3.2.1), and the results will be

shown based on different minimum familiarity levels. Here,

by familiarity level of a device j for weekday d and hour h,

we intend the percentage of occurrences that the observing

(client) device i was connected to j on d days and at h hour,

among the number of co-occurrences between i and j, as

observed prior to the current time. Our expectation is that,

the more familiar a device is, the more accurate the pre-

diction becomes. Results about this set of experiments are

reported in Section 4.3.1.

Semantic Reasoner - In order to evaluate the Seman-

tic Reasoner component, we have uniformly associated, to

each device within the MIT Reality Mining dataset, a ser-

vice of type (id mod n), where n is a parameter indicating

the number of services being composed in a given exper-

iment; we have then replayed the connectivity traces. In

all experiments, we have made the assumption that each

device provides exactly one type of service, and that each

service composition requires n distinct types of services.

A first set of experiments only considered situations where

at least n × 3 devices were colocated, in order to assess

the quality of the selection made by the Semantic Reasoner

when faced with choice; a second set of experiments then

followed, where all situations with at least n colocated de-

vices were considered for composition. In both sets of sim-

ulations, we have recorded the percentage of successfully

completed compositions, out of all those started, when us-

ing the Semantic Reasoner on top of the Mobility Predic-

tor, and compared the results against a random selection

of providers among those currently in reach. Similarly to

what done for the Mobility Predictor, we have also quanti-

fied the number of compositions that we do not start but that

would have been successfully completed. The experiments

have been conducted on different values of ∆ti (i.e., aver-

age amount of time to execute a single service) and n (i.e.,

number of services within a composition), and considering

all services as if they were composed in sequence. The ob-

tained results are reported in Section 4.3.2.



Figure 4. Mobility Predictor - Correct Predic-
tions

4.3 Results

4.3.1 Mobility Predictor

Figure 4 illustrates the percentage of correct predictions

(i.e., predictions which are equal or lower to the actual colo-

cation time) made by the Mobility Predictor, for different

values of α, and broken down for different levels of famil-

iarity between each pair of devices. As expected, the higher

the value of α, the more conservative the model becomes,

with the percentage of correct predictions reaching 95% for

α = 2. However, the price to pay is loss of accuracy. Fig-

ure 5 illustrates the amount of underestimation, computed

as per formula (2), for the same values of α: as shown, the

prediction can miss up to 50% of the actual colocation dura-

tion when α = 2. A good balance between correct predic-

tions and underestimation can be achieved for α = 1, where

the former reaches roughly 90%, while the latter varies be-

tween 22% for strangers, down to 12% for familiar devices.

In the following experiments, we have thus set the value of

α to 1.

It is interesting to note the impact of familiarity level on

the behaviour of the Mobility Predictor: familiarity plays

little importance in the percentage of correct predictions

(Figure 4), unless the standard deviation is only marginally

considered (α = 0.5), thus revealing a predictor model that

tends toward the cautious side; however, it does play an

important part in reducing the amount of underestimation,

which neatly decreases the more frequently the pair of de-

vices have met (Figure 5).

4.3.2 Semantic Reasoner

The first set of experiments we conducted on the Semantic

Reasoner aimed to assess its reliability (in terms of percent-

age of successfully completed compositions), and compare

it with an approach that selects service instances at random,

among those available in the environment. To explicitly as-

Figure 5. Mobility Predictor - Underestima-
tion

sess the reliability of the choices made using the two dif-

ferent approaches, we have considered environments where

n × 3 devices are colocated, while varying the number n

of services that make up a composition, and the duration of

a component service ∆ti (maximum values of n and ∆ti

where chosen so to test even the limit cases in the available

dataset). The results are reported in Figure 6.

As shown, the reliability of the composition performed

by the Semantic Reasoner is consistently very high, in ex-

cess of 97% succesfull completion rate, regardless of the

actual duration of the compound service. In fact, it remains

almost constant while varying the number n of services be-

ing composed, and the time ∆ti required to execute each

of them. On the contrary, the reliability of randomly made

compositions is highly susceptible to increases of n and/or

∆ti: the achieved reliability is high only when just a couple

of services that run for less than 10 seconds each are con-

sidered, as device mobility plays a smaller role in these sit-

uations; however, for compositions consisting of 3 services

or more, and for service instances running for 20 seconds or

longer each, the rate of successfully executed random com-

positions dramatically drops, with a decrease of up to 35%

with respect to the Semantic Reasoner achieved reliability.

Under the same experiment setup, we have also quanti-

fied the number of compositions that the Semantic Reasoner

chose not to start (as they were considered unlikely to com-

plete), but that would have been successfully completed in-

stead. Figure 7 illustrates the results. As shown, at most 8%

of the compositions were mistakingly not started, and these

refer to the more risky cases where long running compo-

sitions were considered (i.e., ∆ti in the order of minutes).

Note also that the Semantic Reasoner does not attempt any

composition involving 5 devices or more (no cases of suc-

cessful compositions were reported in Figure 6 for n = 5),

and it correctly does so, as the error (miss) rate is exactly

0% in this case. These results demonstrate that the Seman-

tic Reasoner achieves reliability without being too conser-
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Figure 7. Semantic Reasoner - Missed Oppor-
tunities

vative in initiating service compositions.

We have then conducted a second set of experiments, to

test the sensitivity of the Semantic Reasoner with respect

to ∆ti and to n individually. We have first set n = 3 and

increased ∆ti up to 600 seconds (Figure 8 and 9), and then

set ∆ti = 20′′ and increased n up to 5 (Figure 10 and 11).

Once again, the maximal values of ∆ti and n were cho-

sen based on limit situations recorded in the Reality Mining

dataset. To increase the number of test cases, we have re-

moved the constraint of having at least n × 3 devices con-

nected, thus considering all situations with at least n colo-

cated devices (for compositions of n services).

The successful completion rate of the Semantic Reasoner

remains remarkably high even for long compositions, while

a random compositions fails up to 50% of the attempted

ones, as ∆ti increases (Figure 8). This confirms the impor-

tance of reasoning about device mobility and composition

semantics when managing service instances whose running

time is 20′′ or above. Figure 9 confirms the observation that

reliability does not come at the price of missed opportuni-

ties, as the percentage of unattempted but would-have-been

successful compositions is constantly well below 5%.
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Figure 8. Semantic Reasoner - Success with

respect to ∆ti, for n = 3
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respect to ∆ti, for n = 3

The last set of experiments confirms the above observa-

tions: increasing the number of composed services n, when

fixing ∆ti = 20′′, has a negative impact on the reliability

of random compositions, while only a marginal decrease

is observed for compositions performed by the Semantic

Reasoner (Figure 10). The number of unattempted compo-

sitions is also marginal (below 0.4%), and it becomes void

when four or more services are being composed (Figure

11).

Based on the results presented in this section, we can

thus confirm that our model enables the reliable composi-

tion of services in realistic human movement environments.

The achieved reliability is only marginally dependent on the

duration of the compound service, and it does not come at

the expense of missed opportunities. This is in sharp con-

trast to the performance achieved by a random selection

of service instances, where the successful completion rate

starts to dramatically drop as soon as service duration ex-

ceeds ∆ti = 20′′.
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5 Related Work

Service composition [6] has attracted a lot of interest

since the advent of Web Services, and it has become a work-

able and broadly adopted technology thanks to real or de-

facto standards such as WSDL [19], SOAP [21] and UDDI

[17]. This attention has mainly concerned the Internet and

hence wired-environments, where the service providers are

static and well known.

In this domain, research has followed two main di-

rections: one stream of research has focused on devel-

oping languages that aimed at adding semantic informa-

tion (e.g., WSDL-S [20], OWL-S [14], METEOR-S [15])

and/or protocol information (BPEL4WS [3], WSCDL [23],

METEOR-S [15], OWL-S [14], YAWL [18]) to service de-

scriptions. A second stream of research has then focused

on methodologies to aggregate these services, which can be

broadly classified into: manual, semi-automatic and auto-

matic [4]. Manual service composition entails the requester

to browse a registry of services, find the desired service

operations, and model their interactions into a flow struc-

ture (mainly with BPEL); the final service is then exposed

as a unique service using WSDL. This methodology is ef-

fectively employed today within the Web Service Industry.

Semiautomatic composition of services usually involves a

service composition system that interacts with the requester

in an iterative manner in order to obtain information about

the requested service, and to construct aggregate services

out of the registered ones. The automatic composition, in-

stead, demands the existence of a discovery agent that re-

ceives a service request and generates a structure of ser-

vices/operations of some pre-registered services based on

the information provided in the request. These automatic

aggregation approaches rely on services to be richly de-

scribed by means of the previously cited Semantic Web Ser-

vice languages.

Service composition in pervasive environments requires

this kind of automatic (de)composition. However, the very

nature of the environment opens the door to new challenges

that limit the applicability of current technologies. For ex-

ample, resource limitations on the target devices have called

for novel solutions to enable efficient ontology-based se-

mantic matching of services [13]; more flexible approaches

enabling the on-demand creation of an agreed ontology are

being investigated too [22]. As stated in Section 3, our work

is orthogonal to the issue of semantic service matching, and

we thus leverage on top of existing solutions. More closely

related to our work are approaches that take into consid-

eration mobility of devices, and thus services. In [5, 11]

(single) service discovery protocols have been proposed that

aim to find the device capable of delivering the best quality

of service, given the dynamicity of the current environment;

the discovery protocol has also been extended to consider

multi-hop networks [16]. We argue that, while important,

QoS reasoning must come after colocation reasoning, espe-

cially for services that require more than just a few seconds

to complete. For the same reason, multi-hop service dis-

covery and delivery is promising only for services that exe-

cute very fast, and/or are deployed in fairly stable scenarios.

We first explored colocation reasoning in [12], where device

mobility was considered when choosing from what (single)

device to download some content; this paper extends our

prior work by enabling the mobility-aware discovery of sets

of component services, and by reasoning about the com-

position semantics to deliver a reliable service composition

experience to the end user.

Research on service composition in mobile environ-

ments is still in the very early days, and other issues, which

were just marginal for infrastructure-based environments,

must now be looked into, including session management

[9, 10], on-the-fly adaptation, on-demand composition, dy-

namic execution monitoring, failure recovery mechanisms,

and so on, just to name a few.



6 Conclusion

In this paper, we have proposed a model and framework

that increase the reliability of service composition in mobile

environments. We do so by means of a prediction model,

that is capable of estimating the duration of colocations be-

tween component services based on past encounters, and

a semantic reasoner that exploits the predicted colocations

and the composition semantics to choose the component

services to rely upon to maximise the chances of success-

ful completion of the compound service. We have demon-

strated that, in a large scale human movement scenario, the

percentage of successfully completed composite services is

much higher than when selecting services without mobility

and composition semantics in mind.

Our plans for the future spans three different direc-

tions. In the short run, we intend to run experiments on

a broader set of human movement traces, and to quan-

tify the gain obtained for each composition semantics our

framework supports (i.e., parallel, loop, choice, etc.). In

the medium run, we intend to investigate self-healing al-

gorithms to react to changes in the environment, thus en-

abling the smooth adaptation of the composite service in

between entry gates of its execution flow, as anticipated in

Section 3. Preliminary results suggest that monitoring sig-

nal strength (and its sudden variation) can provide valuable

information about when run-time adaptation should be car-

ried out, in response to, for example, the unforeseen depar-

ture of a service provider [7]. Ultimately, our goal is to

deliver a lightweight framework that will realise these tech-

niques and that will run seamlessly on mobile devices, thus

becoming an enabling technology for the realisation of per-

vasive computing. Note that we are focusing on real-time

data and services that cannot be pre-fetched; caching tech-

niques, as well as server-side composition, may be preferred

and incorporated in our approach to increase the reliability

of the composition, in the presence of good connectivity to

stable providers.
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