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ABSTRACT
We examine the fundamental properties that determine the basic
performance metrics for opportunistic communications. We first
consider the distribution of inter-contact times between mobile de-
vices. Using a diverse set of measured mobility traces, we find as
an invariant property that there is a characteristic time, order of half
a day, beyond which the distribution decays exponentially. Up to
this value, the distribution in many cases follows a power law, as
shown in recent work. This power law finding was previously used
to support the hypothesis that inter-contact time has a power law
tail, and that common mobility models are not adequate. However,
we observe that the time scale of interest for opportunistic forward-
ing may be of the same order as the characteristic time, and thus the
exponential tail is important. We further show that already simple
models such as random walk and random waypoint can exhibit the
same dichotomy in the distribution of inter-contact time asc in em-
pirical traces. Finally, we perform an extensive analysis of several
properties of human mobility patterns across several dimensions,
and we present empirical evidence that the return time of a mobile
device to its favorite location site may already explain the observed
dichotomy. Our findings suggest that existing results on the perfor-
mance of forwarding schemes based on power-law tails might be
overly pessimistic.
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C.2.1 [Network Architecture and Design]: Wireless communica-
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General Terms
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1. INTRODUCTION

Over the past year, empirical studies have provided evidence
suggesting that power laws characterize diverse aspects of human
mobility patterns, such as inter-contact times, contact, and pause
durations. These studies are of high practical importance for (a)
informed decisions in protocol design, and (b) realistic mobility
models for protocol performance evaluation.

Specifically, Chaintreau et al [2] were perhaps the first to re-
port credible empirical evidence suggesting that the CCDF (com-
plementary cumulative distribution function) of inter-contact time
between human-carried mobile devices follows a power law over a
wide range of values that span the timescales of a few minutes to
half a day. This empirical finding has motivated Chaintreau et al to
pose the hypothesis that inter-contact time has a CCDF with power
law tail. Under this assumption, they derived some interesting re-
sults on the feasibility and performance of opportunistic forwarding
algorithms. In particular, their hypothesis implies that for any for-
warding scheme the mean packet delay is infinite, if the power-law
exponent of the inter-contact time is smaller than or equal to 1 (the
case suggested to hold in practice by the empirical results so far).
These results are in sharp contrast with previously known findings
on similar packet forwarding algorithms (e.g. Grossglauser and
Tse [7]) which were obtained under a hypothesis of exponentially
decaying CCDF of inter-contact time. Furthermore, the authors
argued that the power-law tail is not supported by common mobil-
ity models (e.g. random waypoint [9]), thus suggesting a need for
new models.

In this paper, we find that the CCDF of inter-contact time be-
tween mobile devices features a dichotomy described as follows.
On the one hand, in many cases the CCDF of inter-contact time
follows closely a power-law decay up to a characteristic time, which
confirms earlier studies. On the other hand, beyond this characteris-
tic time, we find that the decay is exponential. This exponential de-
cay appears to be a new finding, which we validate across a diverse
set of mobility traces. The dichotomy has important implications
on the performance of opportunistic forwarding algorithms and im-
plies that recent statements on performance of such algorithms may
be over-pessimistic.

We further provide analytical results showing that simple mobil-
ity models such as simple random walk on a circuit (one-dimensional
version of the Manhattan Street Network model dating from the
80’s [12] and used recently [6, 1]) and random waypoint [9] on a
chain can exhibit the same qualitative properties observed in em-
pirical traces. Whilst our results do not suggest that the considered
mobility models are sufficient for realistic simulations, they stress
that existing models should not be discarded on the basis of not sup-
porting the empirically observed dichotomy of inter-contact time.

183



Table 1: Traces studied.
Name Technology Duration Devices Contacts Mean Inter-contact Time Year
UCSD WiFi 77 days 275 116,383 24 hours 2002

Vehicular GPS 6 months 196 9,588 20.8 hours 2004
MITcell GSM 16 months 89 1,891,024 3.5 hours 2004
MITbt Bluetooth 16 months 89 114,046 87 hours 2004

Cambridge Bluetooth 11.5 days 36 21,203 14 hours 2005
Infocom Bluetooth 3 days 41 28,216 3.3 hours 2005

To understand the origins of the observed dichotomy, we then
examine several properties of device contacts across various di-
mensions. We provide empirical evidence suggesting that the re-
turn time of a mobile device to its favorite location site features the
same dichotomy as the one observed for the inter-contact time be-
tween device pairs. This is an interesting hypothesis as it refers to
the return time of a device to a site, which is a more elementary
characterization of human mobility than that of the inter-contact
times. Also, it is a particularly important metric for cases where
some devices have fixed locations (e.g. throwboxes [19]). It is also
noteworthy that we established the same qualitative equivalence
between return time to a site and inter-contact time for our sim-
ple random walk model. Further, our empirical analysis suggests
that mobile devices are typically in contact in a few sites which are
specific to the given pair of devices. Combining the latter with the
observed dichotomy of the return time to a site may already explain
the inter-contact time dichotomy in real settings.

We also investigate different viewpoints on device inter contacts
such as that of a specific device pair and the random observer view-
point. The examination of these viewpoints are of interest in or-
der to evaluate how representative the CCDF of inter-contact time
is, which following earlier studies, is defined as the CCDF of
inter-contact time samples aggregated over all device pairs over
a measurement period. We argue that the aggregate CCDF of
inter-contact time when used to derive residual time until a con-
tact, refers to a viewpoint that corresponds to a random observer
and for a device pair picked uniformly at random. Finally, we
also report on various breakdowns of the aggregate behavior across
pairs to investigate time nonstationarity due to the synchronization
of time-of-day human activities. Overall our results provide valu-
able insights towards the design of opportunistic packet forwarding
schemes. Our contributions can be summarized in the following
points:

• Using 6 distinct traces, we verify the power-law decay of
inter-contact time CCDF between mobile devices. The data-
sets range from campus-wide logs of device associations to
existing infrastructure, to direct contact bluetooth traces and
GPS logs of vehicle movements over several months.

• We demonstrate that beyond a characteristic time of the order
of half a day which is present across all datasets the CCDF
exhibits exponential decay. (Section 3.) The observed di-
chotomy and exponential decay appear to be new results.

• We provide analytical results that show that already sim-
ple mobility models can exhibit precisely the same qualita-
tive dichotomy. (Section 4.) These results contradict state-
ments that current mobility models cannot support power law
CCDF of inter-contact time.

• We examine several dimensions of device contacts in order to
better understand the observed dichotomy, and we study the

time nonstationarity due to human synchrony with the time
of day. In particular, we provide evidence that there exist
real-world cases in which return time of a mobile device to
its frequently visited site follows the same dichotomy as that
of the inter-contact time between devices. (Section 5.)

Implications to a practitioner. Our findings suggest that: (a)
The issue of infinite expected packet forwarding delay of oppor-
tunistic forwarding schemes under the power tail assumption [2]
does not appear relevant with an exponentially decaying tail of the
inter-contact CCDF. The exponential decay beyond the character-
istic time is of relevance as available data traces suggest that the
mean inter-contact time is in many cases of the same order as the
characteristic time. (b) Widely-used mobility models should not be
abandoned on the claim that they cannot support power-law decay
of the inter-contact CCDF. Finally, (c) our analysis implies that
time nonstationarity and potential environmental or other idiosyn-
cracies that may influence human behavior (e.g., conference sites
vs. working environments) should be taken into account during the
design of future systems as they can significantly affect its primary
performance metrics.

2. DATASETS & DEFINITIONS

2.1 Datasets
To study the properties of contacts between human-carried mo-

bile devices, we analyze several traces with diverse characteristics
in terms of their duration, wireless technology used and environ-
ment of collection. Table 1 presents a summary of the different
datasets that we used, with aggregate statistics regarding the total
duration of the trace, the number of mobile devices, the number of
contacts and the mean inter-contact time. We can group the datasets
in three distinct types:
• Infrastructure-based traces that reflect connectivity between

existing infrastructure, e.g., Access Points (APs) or cells, and wire-
less mobile devices (UCSD [13] & MITcell [5, 4] datasets in Ta-
ble 1). These datasets describe association times of a specific mo-
bile device with an AP or cell.
• Direct contact traces that record contacts directly between mo-

bile devices (e.g., imotes) and were collected by distributing de-
vices to a number of people, usually students or conference atten-
dees (Cambridge [2, 14], Infocom [2, 15] & MITbt [5, 4] datasets
in Table 1). These datasets describe start and end contact times for
each pair of mobile devices.
• GPS-based contacts through a private trace collected by track-

ing the movements of individual people of a large corporation through
GPS units. The GPS units were placed in volunteer’s cars for ap-
proximately four months and overall the trace covers the metropoli-
tan area of a large US city (Vehicular dataset [11] in Table 1). The
dataset logs the latitude and longitude coordinates of each mobile
device every approximately 10 seconds.
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Figure 1: Inter-contact time CCDF for the six datasets.

Note that the first two types of traces have been used in previous
studies (e.g., [2]), while the latter which features exact mobility
patterns based on the GPS trackers is unique to our study. Due to
space limitations, we refer the interested reader to the references
provided for a complete description of the experimental setting, the
devices used and the limitations of each trace.

Apart from the datasets specifying direct connectivity, contacts
need to be inferred in the rest of the traces. For the infrastructure-
based traces, we assume that two devices are in contact if they re-
side within the range of the same AP or cell in accordance with
previous studies. For the vehicular trace, we assume that two mo-
bile devices are in contact if their distance is less than or equal to
a parameter r. For our experiments we chose r = 500 meters [8],
while we experimented with values from 100m to 1km and found
qualitatively similar results.

Throughout the paper we will use all datasets interchangeably.
Unless otherwise specified, our observations apply to all traces
listed in Table 1.

2.2 Definitions
We use the following definitions. An inter-contact time between

two devices is defined as the length of the time interval over which
the two devices are not in contact and are in contact at the end
points of this interval. For a device pair, we call residual inter-
contact time, the time until the next contact of this device pair from
a given observation time. A return time of a device to a set of a
space is defined as the minimum time until the device enters the
set, from a time instance at which the device exited the set.

We call CCDF of inter-contact time between two devices, the
CCDF obtained for the inter-contact time sampled per contact of
these two devices. We further call the aggregate CCDF of inter-
contact time between all devices, the CCDF of per contact sam-
ples of inter-contact time over all distinct pairs of devices. We of-
ten abuse this notation by omitting explicitly to mention the “ag-
gregate” but the meaning should be clear. Finally, we consider
the CCDF of the residual inter-contact time at a specific obser-
vation time, defined for a value t ≥ 0 as the fraction of device pairs
for which the residual inter-contact time at the observation time is
larger than t.

3. DICHOTOMY OF INTER-CONTACT
TIMES

In this section, we examine the empirical distributions of inter-
contact times between mobile devices inferred from the mobility

traces introduced in the previous section. We have carefully ex-
amined all datasets in Table 1 and confirmed the hypothesis that in
many cases the aggregate CCDF of the inter-contact times follows
a power-law up to a characteristic time. We find this time to be in
the order of half a day. Note that this hypothesis was already tested
in previous work [2].

However, we demonstrate here that beyond this characteristic
time, the CCDF exhibits an exponential decay. To the best of
our knowledge, the hypothesis that the CCDF of the inter-contact
times beyond the characteristic time exhibits an exponential decay
has been neither posed nor tested before. We then argue that the
exponential decay is an important property since it bears signifi-
cant impact on the mean inter-contact time or more generally on the
CCDF of the inter-contact time observed from an arbitrary point in
time. Finally, we discuss the practical implications of the observed
dichotomy to opportunistic forwarding.

3.1 Power law and exponential decay
In this section, we provide empirical evidence of a dichotomy in

the CCDF of inter-contact time. Up to a characteristic time in the
order of half a day, the decay of the CCDF is well approximated
as a power law, while beyond this characteristic time, the decay is
exponential.

Power law. We first revisit the power law hypothesis in the ex-
amined datasets. To this end, we have inferred the inter-contact
time for each of the traces and estimated the aggregate CCDF of
inter-contact time between all devices. Fig. 1 shows the respec-
tive aggregate CCDFs of inter-contact times in log-log scale. The
CCDF values follow a straight line over a range of values spanning
the order of a few minutes to half a day, thus suggesting a power
law. These results are in line with observations of previous studies
for datasets MIT, UCSD, Cambridge and Infocom. A new piece of
information is however that the same property holds for the vehic-
ular trace which is significantly different in nature from the rest of
the datasets.

Exponential decay. Carefully examining Fig. 1, we observe that
at roughly around half a day, the CCDF has a knee beyond which
the decay is abruptly faster. We call this knee the characteristic
time. In order to examine the CCDF of inter-contact time beyond
the characteristic time, we replot the same curves of Fig. 1 in Fig. 2
but this time in lin-log scale. We now turn our attention to the
distributions beyond the characteristic time. In the lin-log scale
(Fig. 2), the CCDF can be closely upper bounded with a straight
line, thus indicating an exponential decay. In some traces, e.g., for
Infocom and Cambridge, we also observe some variability in the
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Figure 2: Same as in Fig. 1 but plotted in lin-log scale. The results confirm the explonential decay of the CCDF beyond half a day.

tail that after close examination we found to be in line with daily
periodicities (24 hours).

3.2 Implications of dichotomy to opportu-
nistic forwarding

How does the observed dichotomy in the distribution of inter-
contact time affect the design of forwarding schemes?
Motivated by the observed power law in the empirical aggregate
CCDF of inter-contact time up to half a day, Chainterau et al [2]
made the hypothesis that the CCDF of inter-contact time, denoted
as F 0(t), between any two mobile devices is a Pareto distribution,
thus power law over [t0, +∞), for some t0 > 0. Concretely, for
α > 0,

F 0(t) =

(
t0
t

)α

, t ≥ t0. (1)

The authors then argued that the assumption that the CCDF of
inter-contact time has a power tail is in sharp contrast with prior
work on packet forwarding; previous work would assume expo-
nential tail for the CCDF distribution, such as for example, that
of Grossglauser and Tse [7] that considers two-hop packet relying
schemes. Under the assumption that inter-contact time between
mobile devices are independent and identically distributed, Chain-
treau et al [2] derived interesting results on the feasibility of two-
hop packet relying schemes. In summary, they show that under the
assumptions therein, there exists a two-hop relying scheme that en-
sures finite mean packet forwarding delay if α > 1 + 1/m, where

m is the number of packet replicas made from a source to distinct
relay nodes, and that if α ≤ 1, for any packet forwarding scheme
the mean packet forwarding delay is infinite. It is precisely the
latter case (α ≤ 1) that was suggested to hold in real-life by the
mobility traces analyzed so far.

However, Fig. 2 highlights that the observed dichotomy in the
CCDF of inter-contact times between mobile devices, rather sug-
gests to take as a hypothesis that the CCDF of the inter-contact
times has exponentially decaying tail. This exponential tail entirely
eliminates the issue of infinite packet forwarding delay under the
power tail assumption. Furthermore, in the datasets the mean inter-
contact time is of the same order as the characteristic time, and thus
the exponential tail cannot be ignored by the time separation argu-
ment. This is of particular importance for practical schemes that
were later proposed, such as throwboxes [19]. There, it is assumed
that the mean inter-contact time is finite and can be estimated. This
is a valid hypothesis under the dichotomy that we observed in the
traces is a general feature, but would not be valid under the hy-
potheses of the model in [2].

We further contrast the dichotomy in the distribution of inter-
contact time with the assumed power-law tail by Chainterau et
al [2]. For analyses similar to those in [2], it is of interest to con-
sider the residual inter-contact time distribution, i.e. the time until
the next contact for a node pair from an arbitrary point in time.
Intuitively, the residual time reflects how much time a device has
to wait before being able to forward a message to another specific
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Figure 3: Residual inter-contact time CCDF.

device. Suppose for a moment that contacts between a node pair
occur at instances of a stationary point process in time with a fi-
nite mean inter-contact time. It is well known that the CCDF of
residual inter-contact time, F (t), relates to the CCDF of the inter-
contact time sampled at contact instances, F 0(t), as follows:

F (t) = λ

∫ +∞

t

F 0(s)ds (2)

where 1/λ is the mean inter-contact time sampled at contacts, and
is assumed to be finite. Under the assumptions of Chainterau et al,
we have that Eq. (1) holds, and provided that α > 1, it follows

F (t) =

(
t0
t

)α−1

, t ≥ t0,

thus, again a Pareto distribution but with scale parameter α − 1.
As a result, if we consider the empirical CCDF of the residual
time, we should observe a power law that would manifest itself as
a straight line in a log-log plot.

In contrast, if the empirical CCDF of inter-contact time exhibits
the aforementioned dichotomy, we should rather observe that the
rate of decrease in a log-log plot of the residual inter-contact time
increases. This would be the case provided that the exponent is not
too large and would follow from the tail integration in Eq. (2). In
accordance with the previous discussion, Fig. (3) shows the empir-
ical CCDF of the residual inter-contact time for three datasets and
confirms the increasing rate of the decay.

4. SIMPLE MOBILITY MODELS CAN
SUPPORT THE DICHOTOMY

In this section, we show that already simple mobility models
such as simple random walk on one-dimensional torus feature the
dichotomy in the CCDF of inter-contact time in that it is close
to a power law up to a characteristic time and beyond it has ex-
ponential decay. This model can be seen as an one-dimensional
version of simple random walk on a two-dimensional torus, which
was used as early as in [12] (Manhattan Street Network), and later
used in recent studies (e.g. [6]), and can also be seen as a special
case of random walk on torus model in [1]. We also show that
random waypoint on a chain of discrete sites features the inter-
contact CCDF that is close to a power law over an interval and
has exponentially decaying tail.1 These results contradict existing
statements that current mobility models do not feature power law
CCDF of inter-contact time. The results also show that for some
1The distribution of the inter-contact time under a random way-
point model was analyzed by Sharma and Mazumdar [17]. They
showed that this distribution is exponentially bounded on both sides
under assumptions that (a) mobility domain is a sphere and (b) any
trip between two successive waypoints is of a fixed duration.

0

1

2

m-1

Figure 4: Circuit of m sites.

mobility models the dichotomy in the inter-contact time CCDF
is qualitatively precisely the same as observed in some empirical
traces.

4.1 Simple random walk
We consider as mobility domain a circuit of m sites, enumerated

as 0, 1, . . . , m− 1. (Fig. 4.) A device moves according to a simple
random walk: from a site i, it moves to either site i− 1 mod m or
i + 1 mod m with equal probability. We denote with Xk(n) the
site on which a device k is at time n ≥ 0.

4.1.1 Return time
We first consider the return time R of a single device to an ar-

bitrarily fixed site. Without loss of generality, we may consider
only the return time of device 1 to site 0, i.e. given that X1(0) =
0, X1(1) 6= 0,

R = min{n > 0 : X1(n) = 0}.

The result shows that already the return time to a site features the
aforementioned dichotomy. We show later that inter-contact time
CCDF features the same qualitative properties.

THEOREM 1 (RETURN TIME). For the return time R of a sim-
ple random walk to a fixed site on a circuit of m sites:

1. Expected return time:

E(R) = m

2. Power-law for infinite circuit:

P(R > n) ∼
√

2

π

1

n1/2
, large n

where for two functions f and g, f(n) ∼ g(n) means that f(n)/g(n)
tends to 1 as n goes to infinity.

3. Exponentially decaying tail:

P(R > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial in n and β > 0. We
call trigonometric polynomial in n a function of the form ϕ(n) =∑K

k=1 [ak cos(nωk) + bk sin(nωk)] where ak, bk and ωk are con-
stants.

Item 1 shows that average return time to a site is equal to the
time needed to circumvent the circuit. Item 2 shows that for a cir-
cle of infinitely many sites, the asymptotic of return time CCDF
is precisely the power-law with exponent 1/2. The result suggests
that the asserted asymptotic may be a good approximation of the
CCDF for large but finite circuit (Fig. 5 shows that this holds al-
ready for as few as 20 sites). It is noteworthy that the power-law
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Figure 5: CCDF of inter-contact time for simple random walks on a circuit of m sites in log-log and lin-log scale.

under item 2 holds more generally for any one-dimensional aperi-
odic recurrent random walk with a finite variance σ2 < ∞ such
that we have [18, P3, p381]

P(R > n) ∼
√

2

π
σ

1√
n

, large n.

Item 3 shows that for a circle of a finite number of sites, the CCDF
of the return time has exponential decay.

PROOF. Item 1. Let ri be the mean hitting time of site 0 starting
from site i. We have that r0 = 0 and

ri = 1 +
1

2
(ri−1 + ri+1), i = 1, . . . , m− 1

where addition in indices is modulo m. It can be shown by induc-
tion on i that the solution is

ri = i(m− i), i = 0, 1, . . . , m− 1.

The assertion of item 1 follows, noting that E(R) = 1 + r1.
Item 2. We consider the z-transform of the return time R to site

0 started from a site i, i.e.

fi(z) := E(zR|X0 = i), i = 0, 1, . . . , m− 1.

We have the following system of linear equations

f0(z) = fm(z) = 1

fi(z) = z
1

2
(fi−1(z) + fi+1(z)) , i = 1, . . . , m− 1.

This is a linear recurrence, which after some algebra (see [10]
for details) gives

f0(z) = 0

fi(z) =
a(m,z)(1+

√
1−z2)i+(1−a(m,z))(1−

√
1−z2)i

zi ,
for i = 1, . . . , n− 1

a(m, z) =
zm−(1−

√
1−z2)m

(1+
√

1−z2)m−(1−
√

1−z2)m
.

Of our particular interest is f1(z) that can be expressed as:

f1(z) =
1 + (2a(m, z)− 1)

√
1− z2

z
. (3)

The assertion under item 2 follows by noting that

lim
m→∞

a(m, z) = 0, for 0 < z < 1

and, hence, for an infinite circuit,

f1(z) =
1−

√
1− z2

z
.

Using the Binomial theorem for (1− z2)1/2 and some elementary
calculus, we have

f1(z) =

∞∑
n=1: n odd

(
1
2

n+1
2

)
(−1)

n−1
2 zn

where (
1
2

k

)
=

∏k−1
n=0

(
1
2
− n

)
k!

.

It thus follows that

P(R > n) =
∑

m odd,m>n

|

(
1
2

m+1
2

)
| =

∑
k≥dn

2 e+1

|

(
1
2

k

)
| (4)

Further, using the Stirling formula

|

(
1
2

k

)
| ∼ 1

2
√

πk3/2
, large k. (5)

We now use the fact that if un ∼ 1
nα then

∑∞
m=n um ∼ 1

α−1
1

nα−1

n large, for α > 1. The asserted result follows from (5) and (4).
Item 3: It follows from Lemma 1 (see below) with the subset ∆

reduced to the element 0.
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Figure 6: Reduction to return time of an one-dimensional simple ran-
dom walk.

The following lemma is used in the proof of Theorem 1 and in
other places in this paper, so we give it in a fairly general form.

LEMMA 1 (RETURN TIME FOR FINITE MARKOV CHAIN).
Let Xn be an irreducible Markov chain on some finite state space
S and let ∆ be a subset of S (∆ 6= and ∆ 6= S). Let R be the
return time to ∆. The stationary distribution of R is such that

P(R > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial and β > 0.

Note that R is the time between leaving ∆ and returning to ∆. The
hypotheses imply that the chain is positive recurrent and thus R is
finite. The proof relies on spectral decomposition of non-negative
matrices, using results in [16, 3]. For lack of space, the proof is not
given here. It can be found in [10].

4.1.2 Inter-contact time
We consider mobility of two devices according to two indepen-

dent simple random walks on a circuit of m sites. We assume that
m is even. The inter-contact time between two devices is defined
as, given X1(0) = X2(0) and X1(1) 6= X2(1),

T = min{n > 0 : X1(n) = X2(n)}.

We next examine the CCDF of inter-contact time T .

THEOREM 2 (INTER-CONTACT TIME).
Consider two independent simple random walks on a circuit of m
sites, where m is assumed to be even. The inter-contact time T
between the two random walks has the following properties.

1. Mean inter-contact time:

E(T ) = m− 1

2. Power law for an infinite circuit:

P(T > n) ∼ 2√
π

1

n1/2
, large n

3. Exponentially decaying tail:

P(T > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial in n and β > 0.

With regard to the asserted properties, the inter-contact time is qual-
itatively the same as the return time to a site for a single simple

random walk on a circuit considered in Theorem 1. In particular,
item 2 asserts the same asymptotic CCDF as for the return time in
Theorem 1 except only for different multiplicative constant. Simi-
larly, item 3 is the same property as holding for the return time in
Theorem 1.

PROOF. We make use of a reduction to return time for a simple
random walk described next. The two independent random walks
amount to a random walk on a two-dimensional lattice, with tran-
sition probabilities

P(i,j)((X1(1), X2(1)) = (i± 1, j ± 1)) =
1

4
.

Without loss of generality, we assume (X1(0), X2(0)) = (0, 0)
and (X1(1), X2(1)) = (1,−1). The inter-contact time is the hit-
ting time plus 1 of the two-dimensional random walk (X1, X2)
with the hitting set {i · m + j, i, j = . . . ,−1, 0, 1, . . .}, starting
from the point (1,−1). This is equivalent to considering hitting
time of the boundaries (0, i) and (m/2, i), i = . . . ,−1, 0, 1, . . .,
for a simple two-dimensional random walk started at the point (0,1).
See Fig. 6 for an illustration. This hitting time can be represented
as

T = 1 +

H∑
n=1

Vi (6)

where H is the number of transitions along the x axis until hitting
of the boundaries and Vi is the number of transitions along the ver-
tical axis between the (i − 1)st and ith horizontal transition. Note
that H is return time to site 0 of a simple random walk on a circuit
of m/2 sites started at site 1. We have that H and (V1, V2, . . . , VH)
are independent and that for any given H , (V1, V2, . . . , VH) is a se-
quence of independent and identically distributed random variables
with distribution

P(Vi = k) =
1

2k
, k = 1, 2, . . . .

Item 1: From (6) and noted independency properties, we can use
Wald’s lemma to assert

E(T ) = 1 + E(H)E(V1).

The random variable H is the return time for simple random walk
on a circuit of m/2 sites, so E(H) = m/2 − 1. Note also that
E(V1) = 2. It follows

E(T ) = m− 1.
Item 2. We consider the z-transform of the inter-contact time T .

We have

E(zT ) = zgH

(
z

2− z

)
(7)

where gH(·) is the z-transform of the random variable H . To see
this, first note

E(zVi) =
z

2− z
.

The asserted identity Eq. (7) is direct by following simple calcu-
lus

E(zT ) = zE

(
H∏

i=1

zVi

)

= zE
(

E(zV1)H
)

= zgH

(
z

2− z

)
where gH(z) := E(zH).
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Figure 7: Inter-contact time CCDF for random waypoint on a chain of m = 1000 sites on log-log and lin-log scale

Now, in Eq. (3), we already derived the z-transform of the return
time to site 0 for simple random walk on a circuit of m sites. From
Eq. (7) and Eq. (3), we obtain

E(zT ) = 2− z + 2 (2b(m/2, z)− 1)
√

1− z (8)

with

b(n, z) =
zn − (2− z − 2

√
1− z)n

(2− z + 2
√

1− z)n − (2− z − 2
√

1− z)n
.

The assertion under item 2 now follows from (8) by mimicking the
proof of Theorem 1.

Item 3. This follows from Lemma 1 with Markov chain X(n) =
(X1(n), X2(n)), S the set of reachable states, and subset ∆ =
{(i, i), i = 0, ..., m− 1}.

4.2 Random walk on a 2-dim torus
Similarly one may consider mobility of a device defined as a

random walk on a two-dimensional torus of m and k sites in the
respective two dimensions. One may extend the one-dimensional
mobility of a device to two dimensions by assuming that device
mobility in each of the dimensions is a simple random walk and
the two random walks are independent. This model resembles the
well known Manhattan-grid model [12]. From Lemma 1, we know
that also for this model, the CCDF of inter-contact times between
two devices has exponential tail. A detailed analysis of the CCDF
of inter-contact time is beyond the scope of this paper. Such an
analysis may follow the same steps as in this section, but for the
difference random walk describing the difference between coordi-
nates of the two independent random walkers. It is not clear that
the same dichotomy would hold. For example, we know from [18,
E1, p167] that the CCDF of the return time to a site for a sim-
ple random walk in two dimensions is π/ log(n), for large n. The
interested reader may refer to [10] for simulation estimates of the
inter-contact time in two dimensions.

4.3 Random waypoint on a chain
We consider random waypoint on a chain of m sites. This is a

discrete time, discrete space version of well known random way-
point [9]. Each device is assumed to move stochastically indepen-
dently. A movement of a device is specified by its current site and
next waypoint site. The device moves to its next waypoint site by
one site per time instant. When it reaches the next waypoint, it
updates the next waypoint to a sample drawn uniformly at random
on the set of sites constituting the chain and the movement contin-
ues as described. Two devices are assumed to be in contact at a
time t, if at this time they reside in the same site. We analyze this
model by simulations. In Fig. 7, we show the empirical estimate of
the CCDF of inter-contact time, both in log-log and lin-log scale.

Figure 8: Mobile positions moving according to random waypoint on
a chain of m = 1000 sites. The thick trajectory corresponds to a long
inter-contact time.

The results demonstrate that random waypoint can feature a power
law like decay of the CCDF over an interval that covers the mean
inter-contact time. We also observe the presence of short and long
inter-contact times. Fig. 8 suggests that long inter-contact times
occur due to the assumptions that two devices are in contact only if
in the same site.

5. SPATIO-TEMPORAL BREAKDOWN
Here, we breakdown device contacts along several dimensions.

Our goal is to better understand individual elements that contribute
to the aggregate measures reported in preceding sections. Note that
our findings thus far have been obtained by aggregating over indi-
vidual device pairs and also time.

First, we breakdown device inter contacts by analyzing return
times of individual mobile devices to their respective most fre-
quently visited sites. A site here refers to a location region such as
a circular area for the vehicular data or an AP/cell for UCSD/MIT
data. Our analysis suggests that return times exhibit the same di-
chotomy in the distribution as the one found for the inter-contact
times between device pairs. We then pose and confirm the hypoth-
esis that devices are in contact at a small set of distinct sites. These
two findings suggest that the dichotomy in the distribution of the
return time may already explain the observed dichotomy in the dis-
tribution of inter-contact time between devices.

Second, we discuss how the aggregate CCDF of inter-contact
time between devices as obtained from aggregate samples of inter-
contact time over all device pairs over a measurement period re-
lates to the CCDF of inter-contact time for individual device pairs.
Further, we ask the question what this aggregate CCDF yields
when used to characterize the inter-contact time between devices
observed from an arbitrary point in time.
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Figure 9: Return time exhibits the same dichotomy as the inter-
contact time (in log-log and lin-log scale).

Third, we examine the extent of time nonstationarity in device
inter contacts and non surprisingly confirm the presence of strong
time of day dependencies.

5.1 Return versus inter-contact time
Our evaluation in the previous sections reveals a characteristic

time in the order of half a day, which could be attributed to the daily
periodicity of human behavior. Our goal here is to capture features
of human mobility that could play a role in the observed dichotomy
and in the particular decay of the inter-contact time distribution
within the two timescales.

To this end, we examine the return time of a device to a particu-
lar location or site. Note that the return time characterizes mobility
of a single human and thus may be regarded as a more elementary
characterization of human mobility than inter-contact time. Having
established in the previous section that for simple mobility models
(e.g., independent random walks on a finite circuit) the CCDF of
inter-contact time between two random walkers and the CCDF of
the return time to a specific site for a single random walker fea-
ture precisely the same dichotomy, we now examine whether this
observation holds in real mobility cases.

In a hypothetical scenario where two mobile devices would al-
most always meet at a particular site, the inter-contact time between
the two devices would be stochastically larger than the return time
of any of the two devices to that given site. Supposing further that
two devices are synchronized in time, then the return time to a site
would closely characterize the inter-contact time. In this section,
we demonstrate that return times of a device to a specific site fea-
ture the observed dichotomy.

The dichotomy characterizes the return times of individual de-
vices to their “home” sites. In order to test the hypothesis of the
dichotomy in the CCDF of device return time to a specific site,
we conducted the following analysis. For each device, we infer a
“home" site defined as the location region where the device spends
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Figure 10: CDF of the number of sites that cover 90% of contacts
(top) and contact durations (bottom) per device pair.

most of its time. A location region is either circular area of some
radius r for the vehicular trace, or an AP/cell for the UCSD/MIT
trace. In Fig. 9, we show the CCDF of the inferred return time of
a device to its home site over all devices. The figure shows remark-
able qualitative similarity to the corresponding CCDF of device
inter-contact time (Fig. 1). As we argued over the previous para-
graphs, this is an interesting property as the return time is a more
basic characterization of human mobility than inter-contact time.

We further test the hypothesis that typically two devices meet at
a few sites. To that end, we counted the number of sites per each
device pair ranked with respect to their frequency of contacts. Then
for each device pair, we examined how many sites cover either 90%
of their contacts or 90% of their total contact duration. The two cor-
responding CDFs are shown in Fig. 10, where the median number
of sites is less than 2 and the 90% quantile is less than 4 sites in all
the considered cases.

The main theme of this paper is around the time dimension of
device mobility. In this paragraph, we detour slightly to briefly
consider the spatial aspect of the return time to the home site. In
Fig. 11, we show the CCDF of the trip distance incurred on the
return trips to the home site of a device. We present results only for
the vehicular dataset since this is the only trace with precise loca-
tion information for each device. The CCDF is well approximated
by a straight line in the log-log scale over a wide range of distances
spanning 40 to 200 kilometers. For smaller distances, the distri-
bution appears to decay exponentially. While the spatial aspect of
human mobility is itself an interesting topic, it is beyond the scope
of this paper to pursue this further in more detail.

5.2 Contacts across different viewpoints

In this section we consider different viewpoints on device inter
contacts and their interpretations from the packet forwarding per-
spective. We address the following questions:
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Figure 11: Travel distance on a return trip to device home site in log-
log and lin-log scale.

(a) Is the aggregate CCDF of inter-contact time, derived from sam-
ples aggregated over all device pairs over a measurement interval,
representative of the CCDF of inter-contact time for a specific pair
of devices?

(b) What metric does the aggregate CCDF correspond to when
used to evaluate the delay of an opportunistic forwarding scheme?

(c) How does the inter-contact time statistic depend on the time of
day?

5.2.1 Aggregate vs per device-pair viewpoint
Previous studies and the analysis in Section 3 considered the

CCDF of inter-contact time obtained from samples aggregated over
all device pairs over a measurement period. We call this the ag-
gregate CCDF. We examine here how the aggregate CCDF of
inter-contact time relates to the CCDF of inter-contact time for a
device pair. In general, the two are different and the bias is such
that the aggregate CCDF gives more weight to devices that meet
more frequently.

Consider a mobility trace over a measurement interval of dura-
tion T and let the time origin 0 be defined as the beginning of the
measurement interval. We denote with P the set of all distinct de-
vice pairs that were in contact at least twice over the measurement
interval. Let T p

n the time of the nth contact for a device pair p, with
n = 1, 2, . . . and let for this pair, Np(t) be the number of contacts
on [0, t]. The empirical aggregate CCDF for a value t ≥ 0 is de-
fined as the fraction of inter-contact times over all device pairs in
P that are larger than t, i.e.

F̂ 0(t, T ) =
1

N(T )

∑
p∈P

Np(T )−1∑
n=1

1(T p
n+1 − T p

n > t) (9)
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Figure 12: Aggregate vs. per device-pair CCDF of inter-contact time
(top) and 7 individual device-pair CCDFs (bottom).

where 1(A) is the indicator whether the condition A holds2 and
N(t) =

∑
p∈P Np(t) is the number of contacts over all pairs in P

on [0, t]. We rewrite the above identity as:

F̂ 0(t, T ) =
∑
p∈P

Np(T )− 1

N(T )
F̂ 0

p (t, T ) (10)

where F̂ 0
p (t, T ) is the empirical CCDF of inter-contact time for a

device pair p given by

F̂ 0
p (t, T ) =

1

Np(T )− 1

Np(T )−1∑
n=1

1(T p
n+1 − T p

n > t).

Eq. (10) tells us that the aggregate CCDF is a weighted sum of the
CCDFs over device pairs, with the weight for a device pair propor-
tional to the number of contacts observed for this device pair. This
is indeed intuitive as we expect to observe a larger number of inter-
contact samples for pairs of devices that meet more frequently.

For the sake of discussion, suppose for a moment that contacts
between mobile devices occur at instances of a point process that
is assumed to be time stationary and ergodic, but not necessarily
stochastically identical over pairs of devices. From Eq. (9), it fol-
lows that as T tends to be large, F̂ 0(t, T ) converges to

F 0(t) =
∑
p∈P

λp

λ
F 0

p (t) (11)

where 1/λp is the mean of inter-contact times sampled at con-
tact instances of the device pair p and F 0

p (·) is the corresponding
CCDF, and λ =

∑
p∈P λp is the total rate of contacts over all

device pairs. We note that the aggregate CCDF, F 0(t), exactly
matches each of the CCDFs F 0

p (t), p ∈ P , only if contacts for
distinct pairs are stochastically identical. The aggregate CCDF

21(A) = 1 if A true, else 1(A) = 0.
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of inter-contact time is equal to the weighted sum of individual
CCDFs given in Eq. (11) with weight for a device pair p propor-
tional to the rate of contacts λp.

Thec preceding discussion raises the question of how representa-
tive the aggregate CCDF of inter-contact time is for an arbitrarily
chosen device pair. To address this question, we explore how the
aggregate CCDF differs from the CCDF of a pair of devices in the
different datasets. Fig. 12-top shows the aggregate CCDF of inter-
contact time along with percentiles of the CCDF over all device-
pairs for the UCSD dataset. We observe that for each given time,
more than half of node pairs have a CCDF of the inter-contact
time in a reasonably narrow neighborhood around the aggregate
CCDF. In Fig. 12-bottom, we show 7 distinct CCDFs of individ-
ual device-pairs, which on the other hand present some variability
that could be hidden at the aggregate viewpoint. We have examined
the discrepancy of the aggregate CCDF and the arithmetic mean of
individual CCDFs and observed that the former lower bounds the
latter but their difference was not substantially large.

5.2.2 Time-average viewpoint
In performance analyses of forwarding schemes, the CCDF of

residual time until contact between two devices from an observa-
tion time is often derived from the CCDF of inter-contact time
sampled at contact instants of this device pair. The latter is often
estimated by the aggregate CCDF of inter-contact time. We would
like to understand what does this residual time CCDF correspond
to when we use the aggregate CCDF of inter-contact time. We will
see that this residual inter-contact time distribution, in fact, corre-
sponds to an observation time sampled uniformly at random on the
measurement interval and for a device pair sampled uniformly at
random. Hence, the resulting viewpoint is that of time averaging
and averaging over device pairs.

We revisit the earlier setting and now consider the fraction of
device pairs for which the residual time until next contact is larger
than t ≥ 0 as observed from a time instant s, i.e.

F̂ (t, s) =
1

|P|
∑
p∈P

1(T p
Np(s)+1 − s > t). (12)

By averaging over the measurement interval, we have

F̂ (t, T ) =
1

T

∫ T

0

F̂ (t, s)ds. (13)

After some straightforward but tedious calculus, it follows that we
can rewrite Eq. (13) as

F̂ (t, T ) =
N(T )

|P|T

∫ +∞

t

F̂ 0(s, T )ds + e(T ) (14)

where e(T ) is a term that captures the boundary effects and in all
regular cases (e.g. stationary ergodic) diminishes with the length
of the measurement interval T , so we ignore it for the sake of our
discussion.

From Eq. (12) and Eq. (14), we note that by using the aggregate
CCDF of inter-contact time to estimate the CCDF of the resid-
ual inter-contact time, this in fact corresponds to time averaging
and averaging over device pairs. This viewpoint may differ sub-
stantially from the viewpoint at a specific time of day due to time
nonstationarity of device contacts. We explore this non stationarity
in the following section.

5.2.3 Time of day viewpoint
We now confirm from our datasets that device inter contacts ex-

hibit strong time-of-day nonstationarity. It is important to note
presence of this nonstationarity as a claim based on the time-average
viewpoint may not hold for the viewpoint of a particular time of
day. Fig. 13 presents three sets of results highlighting the effects of
time nonstationarity.

In Fig. 13-left, we show the mean residual inter-contact time over
all device pairs versus the time for the Infocom trace. The figure
shows strong dependency on the time of day, with day and night
periods resulting in the mean residual time ranging from about 6 to
17 hours. This effect is also evident in the aggregate CCDF of the
residual inter-contact time in Fig. (13)-middle, where we plot the
CCDF for three distinct times within the same day (midday, early
evening, after midnight). We observe a significant variation across
the three curves in accordance with the mean variation (Fig. 13-
left). We further looked at the aggregate CCDF of inter-contact
time conditional on whether inter-contact time cross over midnight
or not for the UCSD trace. Fig. (13)-right shows the discrepancy
of the respective conditional distributions. In summary, the results
confirm the intuition that device contacts would typically exhibit
strong time nonstationarity and particular time of day viewpoints
may differ much from the time-average viewpoint.

We subsequently demonstrate the time of day dependence by ex-
amining the contact durations. Fig. 14-top shows samples of con-
tact durations per device pair for the vehicular trace. These samples
suggest a dichotomy of contact durations consisting of (a) short
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contacts in the order of half a minute, and (b) long contacts in the
order of 10 hours. Examining the trace, we found that the short
contacts occur while two vehicles drive by each other, while long
contacts take place for spatially collocated vehicles during work-
ing hours. Fig. 14-bottom further confirms the previous discussion
by showing two CDFs of samples of contact durations for device-
pairs that initiated contacts within the hours of 9AM and 4PM. As
previously mentioned, these distributions suggest that long contact
durations occur during working hours while at other times short
contacts may be more frequent.

6. CONCLUDING REMARKS
The dichotomy hypothesis—power law decay of inter-contact

time distribution up to a point and exponential decay beyond—
which we observed to hold across diverse mobility traces, implies
that existing predictions on the performance of forwarding schemes
based on the power-law tail might be overly pessimistic. The di-
chotomy is not at odds with current mobility models since we show
that already simple models support it. The empirical results suggest
the dichotomy to hold also for inter-contact time between a mobile
device and its frequently visited site, which may inform design of
opportunistic communication systems provisioned with stationary
infrastructure nodes. The diversity of viewpoints such as per device
pair and at a time of day may deviate from the average viewpoint
derived from the inter-contact time characterization widely used in
previous studies and also considered in this paper. Future work may
study further the underlying mobility patterns to understand better
the first principles that induce the observed aggregate behavior of
contact opportunities.
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