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ABSTRACT
Partitions of sequential data exist either per se or as a result of se-
quence segmentation algorithms. It is often the case that the same
timeline is partitioned in many different ways. For example, dif-
ferent segmentation algorithms produce different partitions of the
same underlying data points. In such cases, we are interested in
producing an aggregate partition, i.e., a segmentation that agrees
as much as possible with the input segmentations. Each partition
is defined as a set of continuous non-overlapping segments of the
timeline. We show that this problem can be solved optimally in
polynomial time using dynamic programming. We also propose
faster greedy heuristics that work well in practice. We experiment
with our algorithms and we demonstrate their utility in clustering
the behavior of mobile-phone users and combining the results of
different segmentation algorithms on genomic sequences.

Categories and Subject Descriptors: F.2.2 [ANALYSIS OF AL-
GORITHMS AND PROBLEM COMPLEXITY]: Nonnumeri-
cal Algorithms and Problems; G.3 [PROBABILITY AND STATIS-
TICS]: Time series analysis; H.2.8 [DATABASE MANAGEMENT]:
Database Applications—Data mining

General Terms: Algorithms, Experimentation, Theory

1. INTRODUCTION
Analyzing sequential data has received considerable attention in

the data mining community. To that aim many algorithms for ex-
tracting different kinds of useful information and representation of
sequential data have been proposed. For example, in time-series
mining and analysis, a major trend is towards the invention of seg-
mentation algorithms. These are algorithms that take as input a
sequence of points in R

d, and give as output a partition of the se-
quence into contiguous and non-overlapping pieces that are called
segments. The idea is that the variation of the data points within
each segment is as small as possible, while at the same time the
variation of the data across different segments is as large as possi-
ble. The points in each segment can then be concisely summarized,
producing a compact representation of the original sequence that
compresses the data at hand, and reveals their underlying structure.
The resulting representation depends obviously on the definition of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

0 2 4 6

0 2 4 6

0 2 3 4 6

0 1 2 4 5 6

5

5

1

1
Ŝ
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Figure 1: Segmentation aggregation that takes into considera-
tion only the segment information.

the measure of variation. There are many different such measures,
resulting in different variants of the basic segmentation problem.
Numerous segmentation algorithms have appeared in the literature
and they have proved useful in time-series mining [4, 16, 21, 34],
ubiquitous computing [19] and genomic sequence analysis [14, 27,
32].

The multitude of segmentation algorithms and variation mea-
sures raises naturally the question, given a specific dataset, what
is the segmentation that best captures the underlying structure of
the data? We try to answer this question by adopting a democratic
approach that assumes that all segmentations found by different al-
gorithms are correct, each one in its own way. That is, each one of
them reveals just one aspect of the underlying true segmentation.
Therefore, we aggregate the information hidden in the segmenta-
tions by constructing a consensus output that reconciles optimally
the differences among the given inputs. We call the problem of
finding such a segmentation, the segmentation aggregation prob-
lem.

The key idea of this paper lies in proposing a different view
on sequence segmentation. We segment a sequence via aggrega-
tion of already existing, but probably contradicting segmentations.
Therefore, the input to our problem is m different segmentations
S1, . . . , Sm. The objective is to produce a single segmentation Ŝ
that agrees as much as possible with the given m segmentations.
We define a disagreement between two segmentations S and S′ as
a pair of points (x, y) such that S places them in the same seg-
ment, while S′ places them in different segments, or vice versa. If
DA(S,S′) denotes the total number of disagreements between S

and S′, then the segmentation aggregation asks for segmentation Ŝ
that minimizes

Pm
i=1 DA(Si, Ŝ). Our definitions generalize to the

continuous case, where each segmentation is a partition of a con-
tinuous timeline into segments. The discrete case can be mapped
to the continuous by mapping points to elementary intervals of unit
length.
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As a concrete example, consider a sequence of length 6 and three
segmentations of this sequence: S1, S2 and S3 as shown in Fig-
ure 1. Each segmentation is defined by a set of boundaries. For
example, segmentation S1 has boundaries {0, 2, 4, 6}. A pair of
boundaries i, and i +1 defines a segment that contains all points in
(i, i + 1]. For segmentation S1 the first and second segments con-
tain only a single point (point 1 and 2 respectively), the third seg-
ment contains points 3 and 4, and the last segment contains points
5 and 6. The segmentation Ŝ in the bottom is the optimal aggregate
segmentation for S1, S2 and S3. The total cost of Ŝ is 3, since it
has one disagreement with segmentation S1 and two disagreements
with segmentation S3.

In this paper, we study the segmentation aggregation problem
both theoretically and experimentally. Our contributions can be
summarized as follows.

• We formally define the segmentation aggregation problem.
Our definitions are general enough to include the partition of
both discrete and continuous timelines. We consider various
distance functions, and we study their properties.

• We show that the problem can be solved optimally in poly-
nomial time using a dynamic-programming algorithm. We
prove that the complexity of the algorithm depends on the
number of unique segmentation points used by all segmenta-
tions, and not on the number of input points (the length of the
timeline). We also propose greedy heuristics that although
not exact, they are significantly faster, allowing us to deal ef-
ficiently with large datasets. Experimental evidence shows
that the loss of accuracy due to those heuristics is negligible
in most of the cases.

• We apply the segmentation aggregation framework to sev-
eral problem domains and we demonstrate its practical sig-
nificance. We experiment with haplotype data for producing
a consensus haplotype block structure. We also experiment
with real data of mobile phone users, and we use segmenta-
tion aggregation for clustering and profiling these users. Fur-
thermore, we demonstrate that segmentation aggregation can
be used to alleviate errors in segmentation algorithms that are
caused due to errors or missing values in some of the dimen-
sions of multidimensional time series.

In the next section we give some candidate application domains
for segmentation aggregation. In Section 3 we formally define the
segmentation aggregation problem and the disagreement distance
between segmentations, and in Section 4 we describe exact and
heuristic algorithms for solving it. Section 5 provides experimental
evidence of the framework’s utility. In Section 6 we give alterna-
tive formulations of the segmentation aggregation problem and in
Section 7 we discuss the related work. We conclude the paper in
Section 8.

2. APPLICATION DOMAINS
Segmentation aggregation can prove useful in many scenarios.

We list some of them below.

Analysis of genomic sequences: A motivating problem of impor-
tant practical value is the haplotype block structure problem. The
“block structure” discovery in haplotypes is considered one of the
most important discoveries for the search of structure in genomic
sequences [7]. To explain this notion, consider a collection of DNA
sequences over n marker sites for a population of individuals. Con-
sider a marker site to be a location on the DNA sequence associated
with some value. This value is indicative of the genetic variation

of individuals in this location. The “haplotype block structure” hy-
pothesis states that the sequence of markers can be segmented in
blocks, so that, in each block most of the haplotypes of the pop-
ulation fall into a small number of classes. The description of
these haplotypes can be used for further knowledge discovery, e.g.,
for associating specific blocks with specific genetic-influenced dis-
eases [17].

From the computational point of view, the problem of discover-
ing haplotype blocks in genetic sequences can be viewed as that of
partitioning a multidimensional sequence into segments such that
each segment demonstrates low diversity along the different dimen-
sions. Different segmentation algorithms have been applied to good
effect on this problem. However, these algorithms either assume
different generative models for the haplotypes or optimize different
criteria. As a result, they output block structures that are, to some
extend (small or great) different. In this setting, the segmentation
aggregation assumes that all models and optimization criteria con-
tain useful information about the underlying haplotype structure,
and aggregates their results to obtain a single block structure that is
hopefully a better representation of the underlying truth.

Segmentation of multidimensional categorical data: The seg-
mentation aggregation framework gives a natural way of segment-
ing multidimensional categorical data. Although the problem of
segmenting multidimensional numerical data is rather natural, the
segmentation problem of multidimensional categorical sequences
has not been considered widely, mainly because such data are not
easy to handle. Consider an 1-dimensional sequence of points that
take nominal values from a finite domain. In such data, we can
naturally define a segment as consecutive points that take the same
value. For example, the sequence a a a b b b c c, has 3 segments (a
a a, b b b and c c). When the number of dimensions in such data
increases the corresponding segmentation problems becomes more
complicated, and it is not straightforward how to segment the se-
quence using conventional segmentation algorithms. Similar diffi-
culties in using off-the-shelf segmentation algorithms appear when
the multidimensional data exhibit a mix of nominal and numerical
dimensions. However, each dimension has its own clear segmental
structure. We propose to segment each dimension individually, and
aggregate the results.

Robust segmentation results: Segmentation aggregation provides
a concrete methodology for improving segmentation robustness by
combining the results of different segmentation algorithms, which
may use different criteria for the segmentation, or different initial-
izations of the segmentation method. Note also that most of the
segmentation algorithms are sensitive to erroneous or noisy data.
Such data though are very common in practice. For example, sen-
sors reporting measurements over time may fail (e.g., run out of
battery), genomic data may have missing values (e.g., due to insuf-
ficient wet-lab experiments). Traditional segmentation algorithms
show little robustness to such scenarios. However, when their re-
sults are combined, via aggregation, the effect of missing or faulty
data in the final segmentation is expected to be alleviated.

Clustering segmentations: Segmentation aggregation gives a nat-
ural way to cluster segmentations. In such a clustering, each cluster
is represented by the aggregate segmentation, in the same way that
the mean represents a set of points. The cost of the clustering is the
sum of the aggregation costs within each cluster. Commonly used
algorithms such as k-means can be adapted in this setting. Fur-
thermore, the disagreements distance is a metric. Hence, we can
apply various distance-based data-mining techniques to segmenta-
tions, and provide approximation guarantees for many of them.
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Summarization of event sequences: An important line of research
has focused on mining event sequences [1, 18, 22, 29]. An event
sequence consists of a set of events of certain type that occur at
certain points on a given timeline. For example, consider a user
accessing a database at time points t1, t2, . . . , tk within a day. Or
a mobile phone user making phone calls, or transferring between
different cells. Having the activity times of the specific user for a
number of different days one could raise the question: How does
the user’s activity on an average day look like? One can consider
the time points at which events occur as segment boundaries. In
that way, forming the profile of the user’s daily activity is mapped
naturally to a segmentation aggregation problem.

Privacy-preserving segmentations: Consider the scenario where
there are multiple parties, each having a sequence defined over the
same timeline. The parties would like to find a joint segmentation
of the timeline, but they are not willing to share their sequences.
(Alternatively, each party might have a segmentation method that
is too sensitive to be shared.) A privacy-preserving segmentation
protocol for such a scenario is as follows: each party computes a
segmentation of their sequence locally and sends the segmentation
to one party that aggregates the local segmentations.

3. THE SEGMENTATION AGGREGATION
PROBLEM

3.1 Problem Definition
Let T be a timeline of bounded length. In order to make our defi-

nitions as general as possible, we consider the continuous case. We
will assume that T is the real unit interval (0, 1]. For the purpose
of exposition we will some times talk about discrete timelines. A
discrete timeline T of size N can be thought of as the unit interval
discretized into N intervals of equal length.

A segmentation P is a partition of T into continuous intervals
(segments). Formally, we define P = {p0, p1, . . . , p�}, where
pi ∈ T are the breakpoints (or boundaries) of the segmentation
and it holds that pi < pi+1 for all i’s. We will always assume that
p0 = 0 and p� = 1. We define the i-th segment p̄i of P to be the
interval p̄i = (pi−1, pi]. The length of P , defined as |P | = �, is
the number of segments in P . Note that there is an one to one map-
ping between boundaries and segments. We will often abuse the
notation and define a segmentation as a set of segments instead of
a set of boundaries. In these cases we will always assume that the
segments define a partition of the timeline, and thus they uniquely
define a set of boundaries.

For a set of m segmentations P1, . . . , Pm we define their union
segmentation to be the segmentation with boundaries U =

Sm
i=1 Pi.

Let S be the space of all possible segmentations, and let D be a dis-
tance function between two segmentations P and Q, with
D : S × S → R. Assume that function D captures how differ-
ently two segmentations partition timeline T . Given such a distance
function, we define the SEGMENTATION AGGREGATION problem
as follows:

PROBLEM 1 (SEGMENTATION AGGREGATION). Given a set
of m segmentations P1, P2, ..., Pm of timeline T , and a distance
function D between them, find a segmentation Ŝ ∈ S that min-
imizes the sum of the distances from all the input segmentations.
That is,

Ŝ = arg min
S∈S

mX
i=1

D(S, Pm).

We define C(Ŝ) =
Pm

i=1 D(S, Pm) to be the cost of the aggregate
segmentation.

Note that Problem 1 is defined independently of the distance
function D used between segmentations. We focus our attention
on the disagreement distance DA, which we formally describe in
the next subsection. Other natural alternative distance functions are
discussed in Section 6. The results we prove for DA hold for those
alternatives as well.

3.2 The Disagreement distance
In this section we formally define the notion of distance between

two segmentations. Our distance function is based on similar dis-
tance functions proposed for clustering [15] and ranking [8]. The
intuition for the distance function is drawn from the discrete case.
Given two discrete timeline segmentations, the disagreement dis-
tance is the total number of pairs of points that are placed into the
same segment in one segmentation, while placed in different seg-
ments in the other. We now generalize the definition to the contin-
uous case.

Let P = {p1, . . . , p�p} and Q = {q1, . . . , q�q} be two segmen-
tations. Let U = P ∪Q be their union segmentation with segments
{ū1, . . . , ūn}. Note that by definition of the union segmentation,
for every ūi there exist segments p̄k and q̄t such that ūi ⊆ p̄k and
ūi ⊆ q̄t. We define P (ūi) = k and Q(ūi) = t, to be the labeling
of interval ūi with respect to segmentations P and Q respectively.
Similar to the discrete case, we define a disagreement when two
segments ūi, and ūj receive the same label in one segmentation,
but different in the other. The disagreement is weighted by the
product of the segment lengths |ūi||ūj |. Intuitively, the length cap-
tures the number of points contained in the interval, and the product
the number of disagreements between the points. This notion can
be made formal using integrals, but we omit the technical details.
In the discrete case points can be thought of as unit intervals.

Formally, the disagreement distance of P and Q on segments
ūi, ūj ∈ U is defined as follows.

dP,Q(ūi, ūj) :=

8><
>:
|ūi||ūj |, if P (ūi) = P (ūj) and Q(ūi) �= Q(ūj)

or Q(ūi) = Q(ūj) and P (ūi) �= P (ūj)

0, otherwise.

Naturally, the overall disagreement distance between two seg-
mentations is defined as follows.

DA(P, Q) =
X

(ūi,ūj)∈U×U

dP,Q(ūi, ūj)

It is rather easy to prove that the distance function DA is a met-
ric. This property is significant for applications such as clustering,
where good worst-case approximation bounds can be derived in
metric spaces.

3.3 Computing disagreement distance
For two segmentations P and Q with �p and �q number of seg-

ments respectively, the distance DA(P, Q) can be computed triv-
ially in time O

`
(�p + �q)

2
´
. Next we show that this can be done

even faster in time O (�p + �q). Furthermore, our analysis helps in
building intuition on the general aggregation problem. This intu-
ition will be useful in the following sections.

We first define the notion of potential energy.

DEFINITION 1. Let v̄ ⊆ T be an interval in timeline T that has
length |v̄|. We define the potential energy of the interval to be:

E(v̄) =
|v̄|2
2

. (1)
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Let P = {p0, . . . , p�} be a segmentation with segments {p̄1, . . .,
p̄�}. We define the potential energy of P to be

E(P ) =
X

p̄i∈P

E(p̄i) .

The potential energy computes the potential disagreements that
the interval v̄ can create. To better understand the intuition behind
it we resort again to the discrete case. Let v̄ be an interval in the
discrete time line, and let |v̄| be the number of points in v̄. There
are |v̄|(|v̄| − 1)/2 distinct pairs of points in v̄, all of which can
potentially cause disagreements with other segmentations.

Each of the discrete points in the interval can be thought of as a
unit-length elementary subinterval and there are |v̄|(|v̄|−1)/2 pairs
of those in v̄, all of which are potential disagreements. Considering
the continuous case is actually equivalent to focusing on very small
(instead of unit length) subintervals. Let their length be ε with
ε << 1. In this case the potential disagreements caused by all the
ε-length intervals in v̄ are:

|v̄|/ε (|v̄|/ε − 1)

2
· ε2 =

|v̄|2 − ε|v̄|
2

→ |v̄|2
2

when ε → 0.1

The potential energy of a segmentation P is the sum of the poten-
tial energies of the segments it contains. Intuitively, it captures the
number of potential disagreements due to points placed in the same
segment in P , while in different segments in other segmentations.
Given this definition we can show the following basic lemma.

LEMMA 1. Let P and Q be two segmentations and U be their
union segmentation. The distance DA(P, Q) can be computed by
the following closed formula

DA(P, Q) = E(P ) − E(U) + E(Q) − E(U) (2)

= E(P ) + E(Q) − 2E(U).

PROOF. For simplicity of exposition we will present the proof in
the discrete case and talk in terms of points (rather than intervals),
though the extension to intervals is straightforward. Consider the
two segmentations P and Q and a pair of points x, y ∈ T . For
some point x let P (x), and Q(x) be the index of the segment that
contains x in P and Q respectively. By definition, the pair (x, y)
introduces a disagreement if one of the following two cases is true:

Case 1: P (x) = P (y) and Q(x) �= Q(y),

Case 2: Q(x) = Q(y) and P (x) �= P (y).

In Equation 2, we can see that the term E(P ) gives all the pairs of
points that are in the same segments in segmentation P . Similarly,
the term E(U) gives the pairs of points that are in the same seg-
ments in the union segmentation U . Their difference gives the num-
ber of pairs that are in the same segment in P but not in the same
segment in U . However, if for two points x, y it holds that P (x) =
P (y) and U(x) �= U(y), then it has to be that Q(x) �= Q(y), since
U is the union segmentation of P and Q. Therefore, the potential
difference E(P )−E(U) counts all the disagreements due to Case
1. Similarly, the disagreements due to Case 2 are counted by the
term E(Q) − E(U). Therefore, Equation 2 gives the total number
of disagreements between segmentations P and Q.

Lemma 1 allows us to compute the disagreements between two
segmentations P and Q of size �p and �q respectively in time O(�p+
�q).
1We can obtain the same result by integration, however, we feel
that this helps to better understand the intuition of the definition.

4. AGGREGATION ALGORITHMS
In this section we give optimal and heuristic algorithms for the

SEGMENTATION AGGREGATION problem. First, we show that the
optimal segmentation aggregation contains only segment bound-
aries in the union segmentation. That is, no new boundaries are
introduced in the aggregate segmentation. Based on this observa-
tion we can construct a dynamic-programming algorithm (DP) that
solves the problem exactly even in the continuous setting. If n is the
size of the union segmentation, the dynamic-programming algo-
rithm runs in time O(n2m). We also propose faster greedy heuris-
tic algorithms that run in time O (n(m + log n)) and, as shown in
the experimental section, give high-quality results in practice.

4.1 Candidate segment boundaries
Let U be the union segmentation of the segmentations S1, . . . , Sm.

The following theorem establishes the fact that the boundaries of
the optimal aggregation are a subset of the boundaries appearing
in U . The proof of the theorem appears in the full version of the
paper.

THEOREM 1. Let S1, S2 . . . Sm be the m input segmentations
to the segmentation aggregation problem for the DA distance, and
let U be their union segmentation. For the optimal aggregate seg-
mentation Ŝ, it holds that Ŝ ⊆ U , that is, all the segment bound-
aries in Ŝ belong in U .

The consequences of the theorem are twofold. For the discrete
version of the problem, where the input segmentations are defined
over discrete sequences of N points, Theorem 1 restricts the search
space of output aggregations. That is, only 2n (instead of 2N )
segmentations are valid candidate aggregations. Furthermore, this
pruning of the search space allows us to map the continuous ver-
sion of the problem to a discrete combinatorial search problem, and
to apply standard algorithmic techniques for solving it.

4.2 The DP algorithm
We now formulate the dynamic-programming algorithm that solves

optimally the segmentation aggregation problem. We first need to
introduce some notation. Let S1, . . . , Sm be the input segmen-
tations, and let U = {u1, . . . , un} be the union segmentation.
Consider a candidate aggregate segmentation A ⊆ U , and let
C(A) denote the cost of A, that is, the sum of distances of A to
all input segmentations. We write C(A) =

P
i Ci(A), where

Ci(A) = DA(A,Si), the distance between A and segmentation
Si. The optimal aggregate segmentation is the segmentation Ŝ that
minimizes the cost C(Ŝ).

We also define a j-restricted segmentation Aj to be a candidate
segmentation such that the next-to-last breakpoint is restricted to
be the point uj ∈ U . That is, the segmentation is of the form
Aj = {a0, . . . , a�−1, a�}, where a�−1 = uj . Segmentation Aj

contains uj , and does not contain any breakpoint uk > uj , except
for the last point of the sequence. To avoid confusion, we note that
although a j-restricted segmentation is restricted to select bound-
aries from the first j boundaries of U , it does not necessarily have
length j + 1, but rather, any length � ≤ j + 1 is possible. We
use Aj to denote the set of all j-restricted segmentations, and Ŝj

to denote the one with the minimum cost. Note that for j = 0,
Ŝ0 = {u0, un} consists of a single segment. Abusing slightly the
notation, for j = n, where the next-to-last and the last segmenta-
tion breakpoints coincide to be un, we have that Ŝn = Ŝ, that is,
the optimal aggregate segmentation.

Let A be a candidate segmentation, and let uk ∈ U be a bound-
ary point such that uk /∈ A. We define the impact of uk to A
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to be the change (increase or decrease) in the cost that is caused
by adding breakpoint uk to the A, that is, I(A,uk) = C(A ∪
{uk}) − C(A). We have that I(A,uk) =

P
i Ii(A,uk), where

Ii(A, uj) = Ci(A ∪ {uk}) − Ci(A).
We can now prove the following theorem.

THEOREM 2. The cost of the optimal solution for the SEG-
MENTATION AGGREGATION problem can be computed using a
dynamic-programming algorithm (DP) with the following recur-
sion.

C(Ŝj) = min
0≤k<j

j
C(Ŝk) + I(Ŝk, uj)

ff
(3)

PROOF. For the proof of correctness it suffices to show that the
impact of adding breakpoint uj to a k-restricted segmentation is the
same for all Ak ∈ Ak. Recursion 3 calculates the minimum-cost
aggregation correctly, since the two terms appearing in the summa-
tion are independent.

Formally, for some sequence Q = {q0, . . . , q�}, and some bound-
ary value b, let Pre(Q, b) = {qj ∈ Q : qj < b} be the set of
breakpoints in Q that precede point b. Consider a k-restricted seg-
mentation Ak ∈ Ak with boundaries {a0, . . . , a�−1, a�} ⊆ U .
We will prove that the impact I(Ak, uj) is independent of the set
Pre(Ak, uk). Since the a�−1 = uk for all segmentations in Ak,
we have that I(Ak, uj) is invariant in Ak .

For proving the above claim it is enough to show that Ii(A
k, uj)

is independent of Pre(Ak, uk) for every input segmentation Si.
Let Uk

i be the union of segmentation Si with the segmentation
Ak. Using Lemma 1 we have that Ci(A

k) = E(Ak) + E(Si) −
2E(Uk

i ). Therefore, we need to show that the change in the poten-
tial of Ak, Si and Uk

i is independent of Pre(Ak, uk).
Adding boundary point uj to Ak has obviously no effect on the

potential of Si. In order to study the effect on the potential of Ak,
and Uk

i we consider the general question of how the potential of
a segmentation changes when adding a new breakpoint. Let Q =
{q0, . . . , q�} be a segmentation, and let Q′ = Q ∪ {b} denote the
sequence Q after the addition of breakpoint b. Assume that b falls
in segment q̄t = (qt−1, qt]. The addition of b splits the interval
q̄t into two segments β̄1 = (qt−1, b] and β̄2 = (b, qt] such that
|q̄t| = |β̄1| + |β̄2|. We can think of Q′ as being created by adding
segments β̄1, and β̄2 and removing segment q̄t. Since the potential
of a segmentation is the sum of the potentials of its intervals, we
have that

E(Q′) − E(Q) = −E(q̄t) + E(β̄1) + E(β̄2)

= −|q̄t|2
2

+
|β̄1|2

2
+

|β̄2|2
2

= −|β̄1||β̄2| . (4)

Consider now the segmentation Ak. Adding uj to segmentation
Ak splits the last segment ā� into two sub-segments. From Equa-
tion 4 we know that the change in potential of Ak depends only
on the lengths of these sub-segments. Since these lengths are de-
termined solely by the position of the boundary a�−1, the potential
change is independent of Pre(Ak, uk).

For segmentation Uk
i , we need to consider two cases. If uj ∈ Si,

then the addition of uj to Ak does not change Uk
i , since the bound-

ary point was already in the union. Therefore, there is no change
in potential. If uj �∈ Si, then we need to add breakpoint uj to
segmentation Uk

i . Assume that the breakpoint uj falls in ūt =
(ut−1, ut]. The change in the potential of Uk depends only on the
lengths of sub-intervals into which the segment ūt is split. How-
ever, since uj > uk , and since we know that uk ∈ Uk

i , we have
that ut−1 ≥ uk . Therefore, the change in potential is independent
of Pre(Uk

i , uk), and hence independent of Pre(Ak, uk)

Computing the impact of every point can be done in O(m) time
(constant time is needed for each Si) and therefore the total com-
putation needed for the evaluation of the dynamic-programming
recursion is O(n2m).

4.3 The GREEDY algorithm
Here we present faster heuristics as alternatives to the dynamic-

programming algorithm, that runs in time quadratic to the size of
the union segmentation.

In this section we describe a greedy bottom-up (GREEDYBU)
approach to segmentation aggregation. (The idea in the top-down
greedy algorithm GREEDYTD is similar but the description is omit-
ted due to lack of space.) The algorithm starts with the union seg-
mentation U . Let A1 = U denote this initial aggregate segmenta-
tion. At the t-th step of the algorithm we identify the boundary b
in At whose removal causes the maximum decrease in the cost of
the segmentation. By removing b we obtain the next aggregate seg-
mentation At+1. If no boundary that causes cost reduction exists,
the algorithm stops and it outputs the segmentation At.

At some step t of the algorithm, let C(At) denote the cost of the
aggregate segmentation At constructed so far. As in Section 4.2,
we have that C(At) =

P
i Ci(At). For each boundary point

b ∈ At, we need to store the impact of removing b from At,
that is, the change in C(At). This may be negative, meaning that
the cost decreases, or positive, meaning that the cost increases.
We denote this impact by I(b) and as before, it can be written as
I(b) =

P
i Ii(b).

We will now show how to compute and maintain the impact in
an efficient manner. We will show that at any step the impact for
a boundary point b can be computed by looking only at local in-
formation: the segments adjacent to b. Furthermore, the removal
of b affects the impact only of the adjacent boundaries in At, thus
updates are also fast.

For the computation of I(b) we make use of Lemma 1. Let At be
the aggregate segmentation at step t, and let Si denote one of the in-
put segmentations. Also, let Ui denote the union segments between
At and Si. We have that Ci(At) = E(Si) + E(At) − 2E(Ui).
Similar to Section 4.2, we can compute the impact of removing
boundary b by computing the change in potential. The potential
of Si remains obviously unaffected. We only need to consider the
effect of b on the potentials E(At) and E(Ui).

Assume that b = aj is the j-th boundary point of At. Remov-
ing aj causes segments āj and āj+1 to be merged, creating a new
segment of size |āj | + |āj+1| and removing two segments of size
|āj | and |āj+1|. Therefore, the potential energy of the resulting
segmentation At+1 is

E(At+1) = E(At) +
(|āj | + |āj+1|)2

2
− |āj |2

2
− |āj+1|2

2
= E(At) + |āj ||āj+1|.

The boundary b that is removed from At is also a boundary point
of Ui. If b ∈ Si, then the boundary remains in Ui even after it
is removed from At; thus, the potential energy E(Ui) does not
change. Therefore, the impact is Ii(b) = |āj ||āj+1|. Consider the
case that b �∈ Si. Assume that b = uk is the k-th boundary of
U . Therefore, it separates the segments ūk and ūk+1. The poten-
tial energy of Ui increases by |ūk||ūk+1|. Thus the impact of b is
Ii(b) = |āj ||āj+1| − 2|ūk||ūk+1|.

Therefore, the computation of Ii(b) can be done in constant time
with the appropriate data structure for obtaining the lengths of the
segments adjacent to b. Going through all input segmentations we
can compute I(b) in time O(m). Computing the impact of all
boundary points takes time O(nm). Updating the costs in a naive
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way would result in an algorithm with cost O(n2m). However, we
do not need to update all boundary points. Since the impact of a
boundary point depends only on the adjacent segments, only the
impact values of the neighboring boundary points are affected. If
b = aj , we only need to recompute the impact for aj−1 and aj+1,
which can be done in time O(m).

Therefore, using a simple heap to store the benefits of the break-
points, we are able to compute the aggregate segmentation in time
O(n(m + log n)).

5. EXPERIMENTS
In this section we experimentally evaluate our methodology. First,

on a set of generated data we show that both DP and GREEDY al-
gorithms give results of high quality. Next, we show the usefulness
of our methodology in different domains.

5.1 Comparing aggregation algorithms
For this experiment we generate segmentation datasets as fol-

lows. First we create a random segmentation of a sequence of
length 1000 by picking a random set of boundary points. Then,
we use this segmentation as a basis to create a dataset of 100 seg-
mentations to be aggregated. Each segmentation is generated from
the basis as follows: each segment boundary of the basis is kept
identical in the output segmentation with probability (1 − p), or
it is altered with probability p. There are two types of changes a
boundary is subject to: deletion and translocation. In the case of
translocation, the new location of the boundary is determined by
the variance level (v). For small values of v the boundary is placed
close to its old location, while for large values it is placed further.

Figure 2 shows the ratio of the aggregation costs achieved by
GREEDYTD and GREEDYBU with respect to the optimal DP algo-
rithm. It is apparent that in most of the cases the greedy alternatives
give results with cost very close (almost identical) to the optimal.
We mainly show the results for p > 0.5, since for smaller values
of p the ratio is always equal to 1. Figure 3 shows the distance
(measured using DA) between the aggregation produced by DP,
GREEDYTD and GREEDYBU and the basis segmentation used for
generating the datasets. These results demonstrate that not only the
quality of the aggregation found by the greedy algorithms is close
to that of the optimal, but also that the structure of the algorithms’
outputs is very similar. All the results are averages over 10 inde-
pendent runs.

5.2 Experiments with haplotype data
The basic intuition of the haplotype-block problem as well as

its significance in biological sciences and medicine have already
been discussed in Section 2. Here we show how the segmentation-
aggregation methodology can be applied in this setting. The main
problem with the haplotype block-structure problem is that although
numerous studies have confirmed its existence, the methodologies
that have been proposed for finding the blocks are inconclusive with
respect to the number and the exact positions of their boundaries.

The main line of work related to haplotype-block discovery con-
sists of a series of segmentation algorithms. These algorithms usu-
ally assume different optimization criteria for block quality and
segment the data so that blocks of good quality are produced. Al-
though one can argue for or against each one of those optimization
functions, we again adopt the aggregation approach. That is, we ag-
gregate the results of the different algorithms used for discovering
haplotype blocks by doing segmentation aggregation.

For the experiments we use the published dataset of [7] and we
aggregate the segmentations produced by the following five differ-
ent methods:

0 20 40 60 80 100

AGG

Daly et al.

MDB

DB

htSNP

MDyn

Aggregate block structure of the Daly et. al dataset

Figure 4: Block structure of real haplotype data

1. Daly et al.: This is the original algorithm for finding blocks
used in [7].

2. htSNP: This is a dynamic-programming algorithm proposed
in [35]. The objective function uses the htSNP criterion pro-
posed in [30].

3. DB: This is again a dynamic-programming algorithm, though
for a different optimization criterion. The algorithm is pro-
posed in [35], while the optimization measure is the haplotype-
diversity proposed by [20].

4. MDB: This is a Minimum Description Length (MDL) method
proposed in [3].

5. MDyn: This is another MDL-based method proposed by [23].

Figure 4 shows the block boundaries found by each one of the
methods. The solid line shows the block boundaries found by do-
ing segmentation aggregation on the results of the aforementioned
five methods. The aggregate segmentation has 11 segment bound-
aries, while the input segmentations have 12, 11, 6, 12 and 7 seg-
ment boundaries respectively, with 29 of them being unique. Note
that in the result of the aggregation, block boundaries that are very
close to each other in some segmentation methods (for example
htSNP) disappear and in most cases they are replaced by a single
boundary. Additionally, the algorithm does not always find bound-
aries that are in the majority of the input segmentations. For ex-
ample, the eighth boundary of the aggregation appears in only two
input segmentations, namely the results of Daly et al. and htSNP.

5.3 Robustness experiments
In this experiment we demonstrate the usefulness of the segmen-

tation aggregation in producing robust segmentation results, insen-
sitive to the existence of outliers in the data. Consider the following
scenario, where multiple sensors are sending their measurements
to a central server. It can be the case that some of the sensors may
fail at certain points in time. For example, they may run out of
battery or report erroneous values due to communication delays in
the network. Such a scenario causes outliers (missing or erroneous
data) to appear. The classical segmentation algorithms are sensitive
to such values and usually produce “unintuitive” results. We here
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Figure 2: Performance ratio of greedy algorithms with respect to the optimal DP result.
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Figure 3: Disagreements of the aggregate segmentation with the ground truth segmentation, used for generating the data.
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Figure 5: Disagreements of Sagg and Sblind with the true under-
lying segmentation Sbasis.
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Figure 6: Anecdote illustrative of the insensitivity of the aggre-
gation to the existence of outliers in the data.

show that the segmentation aggregation is insensitive to the exis-
tence of missing or erroneous data via the following experiment.
First, we generate a multidimensional sequence of real numbers
that has an a-priori known segmental structure. We fix the num-
ber of segments appearing in the data to be k = 10, and all the
dimensions have the same segment boundaries. All the points in
a segment are normally distributed around some randomly picked
mean μ ∈ [9, 11]. One can consider each dimension to correspond
to data coming from a different sensor. We report the results from
a dataset that has 1000 data points, and 10 dimensions.

Standard segmentation methods segment all dimensions together.
We do the same using the variance of the segments to measure the
quality of the segmentation. We segment all the dimensions to-
gether using the standard optimal dynamic-programming algorithm
for sequence segmentation [4]. We denote by Sbasis the segmenta-
tion of this data obtained by this dynamic-programming algorithm.

Then, we simulate the erroneous data as follows: first we pick a
specific subset of dimensions on which we insert erroneous blocks
of data. The cardinality of the subset varies from 1 to 10 (all di-
mensions). An erroneous block is a set of consecutive outlier val-
ues. Outlier values are represented by 0s in this example. We use
small blocks of length at most 4 and we insert 1 − 10 such blocks.
This means that in the worst case we have at most 4% faulty data
points.

We segment this noisy dataset using the standard segmentation
algorithm described above that blindly segments all dimensions
together. We denote by Sblind the segmentation produced by the
dynamic-programming segmentation algorithm on this modified dataset.
We also experiment with the aggregation approach. We segment
each dimension separately in k = 10 segments and then we aggre-
gate the results. We denote by Sagg the resulting aggregate segmen-
tation.

Figure 5 reports the disagreements DA(Sagg, Sbasis) and DA(Sblind,
Sbasis) obtained when we fix the number of erroneous blocks in-
serted in each dimension and vary the number of dimensions that
are faulty, and vice versa. That is, we try to compare the number
of disagreements between the segmentations produced by aggrega-
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Figure 7: Clustering of a single user’s logged days into three
clusters and the cluster representatives.

tion and by blindly segmenting all the dimensions together, to the
segmentation that would have been obtained if the erroneous data
were ignored. Our claim is that a “correct” segmentation should
be as close as possible to Sbasis. Figure 5 indeed demonstrates that
the aggregation result is much closer to the underlying true seg-
mentation, and thus the aggregation algorithm is less sensitive to
the existence of outliers. Figure 6 further verifies this intuition by
visualizing the segmentations Sbasis, Sagg and Sblind for the case of 5
erroneous dimensions containing 5 blocks of consecutive outliers.

5.4 Experiments with reality-mining data
The reality-mining dataset2 contains usage information of 97

mobile phone users [9]. A large percentage of these users are either
students (masters students, freshmen, graduate students) or faculty
(professors, staff) of the MIT Media Laboratory, while the rest are
incoming students at the MIT Sloan business school, located adja-
cent to the laboratory. The collected information includes call logs,
Bluetooth devices in proximity, cell tower IDs, application usage,
and phone status (such as charging and idle) etc. The data spans
a period from September 2004 to May 2005. We mainly focus
our analysis on the data related to the callspan of each user. The
callspan data has information related to the actual times each user
places a phonecall.

From this data we produce segmentations as follows: for each
user, and each day during which he has been logged, we take the
starting times reported in the callspan and we consider them as seg-
ment boundaries on the timeline of the day. For example, a user that
is logged for 30 days, produces 30 different segmentations, one for
each day.

5.4.1 Identifying single user’s patterns
In our first experiment, we cluster the days of a single user. Since

each day is represented as a segmentation of the 24-hour timeline,
clustering the days corresponds to clustering these segmentations.
We use distance DA for comparing the different days. The def-
inition of segmentation aggregation allows naturally to define the
“mean” of a segmentation cluster to be the aggregation of the seg-
mentations that are grouped together in the cluster. We can then
readily apply the classical k-means algorithm to the space of seg-
mentations.

2The interested reader can find the datasets at http://
reality.media.mit.edu/

clustering of users in 10 clusters
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Figure 8: The clustering structure of the reality-mining user
data

Figure 7 shows the clustering of the days of a single user (who
is classified as a professor in the dataset) over a period of 213 days
starting from September 2004 to May 5th 2005 (not all days are
recorded). The plot on the top shows the clustering of the days.
The days are arranged sequentially and the different colors corre-
spond to different clusters. It is apparent that at the beginning of the
recorded period the patterns of the user are quite different from the
patterns observed at later points in the study. More specifically, all
the initial days form a single rather homogeneous cluster. From [9]
we take the information that during this period the Media Lab sub-
jects had been working towards the annual visit of the laboratory’s
sponsors. It had been previously observed that this had affected the
subjects’ schedules. It is possible that our methodology captures
this pattern. The rest of Figure 7 shows the representatives of each
cluster. We observe that the representatives are rather distinct con-
sisting of profiles where the users use their phone either in morning
hours, or in evening hours, or both.

5.4.2 Finding groups of similar users
In the second experiment we try to build clusters of users that

show similar patterns in their activities. For this, we build the pro-
file of each user, by aggregating all the days he has been logged
for. Next, we cluster the user profiles, using the k-means algorithm
for segmentations, as discussed in the previous paragraph. Figure 8
gives visual evidence of the existence of some clusters of users in
the dataset. The plot shows the distances between user profiles,
in terms of disagreement distance. The rows and the columns of
the distance matrix have been rearranged so that users clustered
together are put in consecutive rows (columns). The darker the col-
oring of a cell at position (i, j) the more similar users i and j are.
There are some evident clusters in the dataset, like for example the
one consisting of users at positions 1 − 10, 33 − 38, 39 − 54,
55−68 and 69−77. Note that the cluster containing users 55−68
is characterized not only by strong similarity between its members,
but additionally a strong dissimilarity to almost every other user in
the dataset.

From these groups, the third one, consisting of rows 39 − 54,
seems to be very coherent. We further looked at the people consti-
tuting this group and found out that most of them are related (being
probably students) to the Sloan business school. More specifically,
the academic/professional positions of the people in the cluster, as
reported in the dataset, are as follows.
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sloan, mlUrop, sloan, sloan, sloan, sloan,
1styeargrad, sloan, 1styeargrad, mlgrad,
sloan, sloan, sloan, staff, sloan, sloan

Similarly, the relatively large and homogeneous group formed by
lines 1 − 10 consists mostly from staff and professors.

The cluster of users 55 − 68, although quite homogeneous and
distinct from the rest of the dataset, it contains a rather diverse set
of people, at least with respect to their positions. However there
may be another link that makes their phone-usage patterns similar,
and separates them from the rest of the users.

6. ALTERNATIVE DISTANCE FUNCTIONS
In this section we discuss alternative formulations of the SEG-

MENTATION AGGREGATION problem. The differences are due to
the alternative distance functions that can be used for comparing
segmentations.

6.1 Entropy Distance
The entropy distance between two segmentations quantifies the

information one segmentation reveals about the other. In general,
the entropy distance between two random variables X and Y that
take values in domains X and Y respectively is defined as

DH(X, Y ) = H(X | Y ) + H(Y | X),

where H(· | ·) is the conditional entropy function and

H(X | Y ) = −
X
x∈X

X
y∈Y

Pr[x, y] log Pr[x | y]. (5)

For segmentations this can be applied as follows. Let Q =
{q0, . . . , q�q} be a segmentation that partions the unit real inter-
val. Let i be the label of the interval q̄i = (qi−1, qi] Abusing the
notation, we define a random variable Q : (0, 1] → {1, . . . , �q},
where Q(x) = i for x ∈ q̄i. Assuming that x is drawn uniformly
at random, we have that Pr[Q(x) = i] = |q̄i|. In plain terms,
each segment is chosen with probability proportional to its length.
Given two segmentations Q and P we define the joint distribution
of the random variables Q and P as P [i, j] = |q̄i ∩ p̄j |, that is, the
probability that a randomly chosen point falls in the intersection of
the segments q̄i and p̄j . We can now define the entropy distance
DH(P, Q) between segmentations, using Equation 5.

The entropy distance is also a metric. Computing the entropy
distance between two segmentations can be done in linear time.
The main idea of this linear-time algorithm is a decomposition
of DH(P, Q) similar to the decomposition of DA(P, Q) showed
in Lemma 1 (Equation 2), using the concept of potential energy.
For the entropy distance the potential energy of segmentation P is
E(P ) = −H(P ).

Furthermore, solving the SEGMENTATION AGGREGATION prob-
lem (Problem 1) for DH can also be done optimally using a dynamic-
programming algorithm. This algorithm is a variation of the DP
algorithm discussed in Section 4. The recursion of the algorithm
is again based on the fact that adding a new breakpoint has only a
local effect on the cost of the segmentation. The details of the al-
gorithms for the entropy distance are omitted due to lack of space.

6.2 Boundary Mover’s Distance
The Boundary Mover’s Distance (DB)3 compares two segmen-

tations P and Q considering only the distances between their bound-
ary points. Let the boundary points of P and Q be {p0, . . . , p�p}
3The name is inspired by the Earth Mover’s Distance [31].

and {q0, . . . , q�q}. We define the Boundary Mover’s distance of P
with respect to Q to be

DB(P | Q) =
X

pi∈P

min
qj∈Q

|pi − qj |r .

Two natural choices for r is r = 1 and r = 2. For r = 1 the Bound-
ary Mover’s distance employs the Manhattan distance between the
segment boundaries, while for r = 2 it uses the sum-of-squares
distance.

The SEGMENTATION AGGREGATION problem for distance DB

with m input segmentations S1, . . . , Sm asks for an aggregate seg-
mentation Ŝ of at most t boundaries such that:

Ŝ = arg min
S∈S

DB(Si | S).

Note that in this alternative definition of the segmentation aggre-
gation problem we have to restrict the number of boundaries that
can appear in the aggregation. Otherwise, the optimal Ŝ will con-
tain the union of boundaries that appear in P and Q – such a seg-
mentation will have total cost equal to 0. One can easily see that
this alternative definition of the segmentation aggregation problem
can also be solved optimally in polynomial time. More specifically,
the problem of finding the best aggregation with at most t segment
boundaries is equivalent to one-dimensional clustering that can be
solved using dynamic programming. For the mapping, consider
the boundaries of the input segmentations to be the points to be
clustered, and the boundaries of the aggregation to be the cluster
representatives. We note that for the case r = 1 the boundaries of
the aggregate segmentation are again a subset of the union segmen-
tation.

7. RELATED WORK
Related work on segmentation algorithms and their practical util-

ity has already been discussed in Section 1. Though these algo-
rithms are related to our work, our goal here is not just to propose a
new segmentation algorithm but to aggregate the results of existing
algorithms.

There exists a considerable amount of work for building indi-
vidual, system or network temporal profiles that can be used in
anomaly or misuse detection, prediction of mobile-phone users etc.,
as for example in [11, 26, 24, 28]. These methods approach the
problem from a different view point and segmentations are not a
central concept in this approach. Though we explore the applica-
bility of segmentation aggregation in clustering users and build-
ing user profiles, performing exhaustive experiments on profile-
building is beyond the scope of this paper. Exploring the rela-
tionship of our method to other profiling methods is an interesting
question for future work.

Most related to our work are other aggregation problems that
have been extensively studied. The notion of aggregation has re-
cently emerged in several data-mining tasks. The problem of ag-
gregating clusterings has been studied under the names of cluster-
ing aggregation [15], consensus clustering [2, 25] and cluster en-
sembles [12, 33]. Ranking aggregation has been studied from the
viewpoints of algorithmics [2], Web search [8], databases [10], and
machine learning [13]. A third important group of aggregating data
mining results is formed by voting classifiers such as bagging [5]
and boosting [6].

Our work is similar in spirit, since we are also trying to aggre-
gate results of existing data-mining algorithms. However, although
the segmentation problem has received considerable attention by
the data-mining community, to the best of our knowledge, the seg-
mentation aggregation problem has not been previously studied.
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8. CONCLUDING REMARKS
We have presented a novel approach to sequence segmentation,

that is based on the idea of aggregating existing segmentations. The
utility of segmentation aggregation has been extensively discussed
via a set of useful potential applications. We have formally de-
fined the segmentation aggregation problem and showed some of
its interesting properties. From the algorithmic point of view, we
showed that we can solve it optimally in polynomial time using dy-
namic programming. Furthermore, we designed and experimented
with greedy algorithms for the problem, which although not opti-
mal, in practice they are both fast and give results of high quality
(almost as good as the optimal). The practical utility of the problem
and the proposed algorithms has been illustrated via a broad exper-
imental evaluation that includes applications of the framework on
genomic sequences and users’ mobile-phone data. We additionally
demonstrated that segmentation aggregation is a noise and error-
insensitive segmentation method that can be used to provide trust-
worthy segmentation results.
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