
Context-aware Battery Management for Mobile

Phones: A Feasibility Study

Nishkam Ravi, James Scott* and Liviu Iftode
Department of Computer Science, Rutgers University, USA

*Intel Research, Cambridge, UK
{nravi@cs.rutgers.edu, jamesscott@acm.org, iftode@cs.rutgers.edu}

Abstract. In this paper, we propose a system for context-aware battery
management that warns the user when it detects that the phone battery
can run out before the next charging opportunity is encountered. At
the heart of this system, are algorithms that predict: (1) when the next
charging opportunity will be available, (2) how much call-time will be
required by the user in the interim, and (3) how long the battery will
last if the current set of applications continue to execute. We propose
algorithms that process user’s location traces and call-logs for making
some of these predictions. We also propose a technique to predict battery
consumption of applications. We present the design of the system and
demonstrate its feasibility by experimentally showing that each of the
prediction algorithms can perform with fairly high accuracy.

1 Introduction

Mobile devices such as smart phones are riding the wave of Moore’s Law, pro-
viding increasing functionality due to rapid improvements in processing power,
storage capacities, graphics, high-speed connectivity, etc. However, the main
problem faced by these devices is battery management, since battery capacities
are not experiencing the same exponential growth curve as other technologies
such as processing power and storage. While there is ongoing research in discov-
ering and exploiting ambient energy sources, it is highly likely that energy will
remain the key bottleneck for mobile devices in the near future.

The main implication of battery management is the need for interacting
and involving the user of the device in managing this resource. This interaction
takes two main forms: (i) Users must be informed of the energy status of a
device so they can decide how to prioritise amongst the various tasks that the
device can perform (phone calls, gaming, messaging, media creation/playback,
etc). (ii) Users must physically plug in a device and surrender its mobility for
a period of time in order to charge it when necessary. The current solution for
this user interaction takes the form of a battery meter, augmented with the
ubiquitous “battery low” audio signals, and, on some devices, with a remaining
time estimate at current power consumption.

This de facto user interface standard has remained relatively unchanged for
a number of years. For mobile phones, this system is arguably sufficient for users

to get into habits of charging their devices at suitable periods, as they know
their call patterns, and the devices have been optimised for low-power standby
modes. For laptops, these devices are relatively rarely used in situations where
power is unavailable, and, unlike with phones, users are accustomed to bringing
the power adaptor with them.

However, a number of factors have conspired to change this comfortable
status quo. Firstly, convergence is leading to more multi-functional computing
devices with the always-on expectation of phones. Secondly, WLAN interfaces
such as Bluetooth and 802.11 have become ubiquitous, and during data transfer
(though not during idle) they are relatively hungry consumers of energy. Thirdly,
pervasive computing applications have provided reasons for mobile devices to be
executing always-on background applications which use sensing, computation
and communication and, therefore, break the low standby-mode power profile
that users have become accustomed to. The time has come to revisit the issue
of battery management for mobile end-user devices.

The key observation that we make is that a simple “battery remaining” or
even “time remaining” does not enable the user to make the right decisions as
to the spend of the energy budget and the request for recharging. We illustrate
this with a few anecdotes. Note that the use of “smart phone” in these anecdotes
can be taken to mean “converged mobile device” and they are not necessarily
phone-specific.

BING BING! Alice’s smart phone’s alarm clock goes off. As she turns
off the alarm, she notices that her smart phone is only 15% charged,
annoying, since the charger was right by her bed but she forgot to plug
it in when she went to sleep. Never mind, she has another charger at
work. On the way in, she uses her phone’s traffic-aware navigation ap-
plication, connected to a Bluetooth GPS unit, allowing her to drive the
most optimal route based on real-time traffic information. Her battery
falls to 10%, a static threshold where her phone automatically turns off
Bluetooth, causing her navigation software to silently fail to reroute her
off the highway, leading her straight into a traffic jam.

There are two take-away messages here. The first is that the phone should
have reminded Alice to charge it when she went to sleep, as the “cost” of losing
mobility while charging would have been zero in that period. Sometimes, it does
not make sense to maximise perceived battery life by waiting until the battery
is low.

Nonetheless, Alice’s phone actually still has plenty of energy, since she is just
20 minutes away from another charging opportunity. The heuristic that a low
absolute battery level means scarce energy, causing Bluetooth to be turned off,
is plainly incorrect in this situation. Ironically, this static threshold (common
in current devices) may cause her device to run out of battery, as she may be
sitting in that jam for some time.

Bob’s phone is at 80% charge, normally enough for 3 days. As he is get-
ting ready for a 5000-mile flight, he decides to try out his phone’s music

player and loads some songs onto it. However, by the time he boards the
plane, his phone is already down to 50% battery level, due to his music
listening and due to background services such as his home automation
application, polling unfamiliar Bluetooth devices in the airport. Three
hours into the flight, still listening to his music, his phone beeps to say
it is at 10% charge and he turns it off, but nonetheless his battery is so
low that it dies when he tries to rendezvous with his friend on landing.
Consequently, he spends a frustrated half hour searching for a payphone
and for a shop where he can get change.

The opposite happens here. 100% charge does not necessarily mean plentiful
energy; the next charging opportunity may be many hours or days away. The
background application, and even the foreground but non-crucial music appli-
cation, have been allowed to drain the phone’s battery to the point where the
crucial application of telephony is unavailable at the time it is required. No
warning that this would happen has been given until it was too late. The spec-
tre of this scenario may cause many people to NOT make full use of the broad
capabilities of smart phones, since they do not trust that applications they may
download and run will not drain the battery in this way.

In this paper we propose a new context-aware battery management architec-
ture for mobile devices (henceforth CABMAN), based on three principles:

– The availability of crucial applications to users should not be compromised
by non-crucial applications.

– The opportunities for charging should be predicted to allow devices to deter-
mine if they have scarce or plentiful energy, instead of using absolute battery
level as the guide

– Context, such as location information, can be used to predict charging op-
portunities

To achieve these goals, we propose three “prediction” algorithms that predict:
the next charging opportunity, the call time requirements of the user over a
period of time (assuming that telephony is the most critical application), and
the “discharge speedup factor” of the set of non-crucial applications running.

We present CABMAN’s system design (Section 3) followed by an evaluation
of the system using real devices and real traces of human mobile phone activity
(Section 4), followed by related work (Section 5) and conclusions (Section 6).

2 Problem Definition

The key role of our battery manager is to be able to answer the query: Will the
phone battery last until the next charging opportunity is encountered? In order
to answer this query without involving the user, the battery manager should
be able to answer the following three questions (1) when the next opportunity
for recharging the battery will be available and hence what is the total battery
lifetime available to the user? (2) what fraction of this battery lifetime will be

total battery lifetime available before next charging opportunity

battery lifetime required for telephony battery lifetime that can be used by applications

Fig. 1. Battery lifetime model

consumed by critical applications such as telephony? and (3) what fraction of
this battery lifetime can be left for use by non-critical applications? This battery
lifetime model is captured in Figure 1. For the purpose of this paper, we assume
that telephony (i.e making and receiving calls) is the critical application and the
daemon applications running on the phone are non-critical.

We identify three subproblems: (1) prediction of the next charging-opportunity,
(2) prediction of the calltime that might be required by the user in the interim,
and (3) prediction of how long the battery will last if the current set of ap-
plications continue to execute on the device. With this knowledge, the battery
manager will be able determine if the user will run out of battery sooner than
they should, and ask them to terminate one or more applications or look for
a charging opportunity. In order to solve these three subproblems, we need a
system that can monitor user context and sense battery level of the device; a set
of algorithms for making predictions and a central component for assimilating
the information together and warning the user appropriately. In the following
section, we present the design of such a system along with the set of prediction
algorithms.

3 CABMAN System Design

CABMAN consists of eight components (Figure 2) divided into three categories:
system-specific monitors, predictors, and the viceroy/UI, which we now discuss
in turn, paying particular focus to the three prediction algorithms (for charging
opportunities, call time needs, and battery lifetime), and how they are accom-
plished. These algorithms are evaluated in Section 4.

3.1 System-specific Components

In order to perform context-aware battery management, we need to detect var-
ious data from the device’s operating system, including battery status, list of
processes running on the device, the calls made on the device (under the as-
sumption that this will be regarded as a “crucial” application), and finally, some
context information to allow us to predict the next charging opportunity. The
Process monitor is responsible for keeping track of the processes running on the
device and informing the viceroy whenever a new process is detected. Battery
monitor probes the battery periodically and enquires about remaining charge

Fig. 2. CABMAN system architecture

and voltage level. Context Monitor is responsible for sensing and storing context
information (such as location) on the phone. Call Monitor logs communication
(incoming/outgoing calls, incoming/outgoing SMSs).

The purpose of separating out system-specific functionality is to make clear
the requirements that CABMAN has from the underlying operating system, and
thus facilitate porting of CABMAN to the multiple platforms used for mobile
phones (e.g. Symbian, Linux, Windows Mobile).

3.2 Charging Opportunity Predictor

The crux of CABMAN is that a phone should determine if a charging opportunity
is near enough for the battery to “last” until then (by which we mean maintaining
the ability to execute the crucial application). If this is true, then CABMAN
should not inconvenience the user with unnecessary warnings or actions such as
going into low-power modes with reduced functionality. If this is false, then even
if the phone battery is relatively full, CABMAN should warn the user that they
risk a dead battery.

Since a growing number of mobile phones can sense their location, either
through GPS or beacon-based techniques such as Place Lab [10], we have chosen
to focus on location sensing as a way of inferring charging opportunity in this
preliminary feasibility study. The disadvantage of using only location information
in inferring charging opportunity, is that it does not accomodate for mobile
chargers (such as those in cars). Additional context information, such as time-of-

day, speed, presence of other wireless devices, and charge-logs can help alleviate
this problem. In this preliminary study, we only evaluate with respect to static
charging opportunities.

Cell-based charging opportunity prediction algorithm Many phones are
capable of detecting the id of the current cell that the phone is connected to.
We therefore propose an algorithm that makes use of this data. If richer location
information were available, either based on more cells, detection of other beacon
types (WiFi APs, etc), or direct positioning information (GPS, A-GPS, etc), that
could be used instead, however fewer phones currently have such capabilities.
The basis of this algorithm is that certain cells (e.g. those at home or perhaps
the workplace) are marked as being charging opportunities, and the time until
the user is expected to reach those cells is used as the prediction. The choice
of which cells are marked is easily accomplished using the battery monitor to
determine when charging occurs and marking the cells in which this normally
occurs. User feedback can also be implicitly integrated — when the phone asks
for more charge, if the user often “refuses” by not charging the phone, then the
cell can be unmarked.

The prediction of when marked cells will be reached is accomplished by
pattern-matching the current pattern of cell movements against a larger his-
torical set of cell movement patterns. We represent the current pattern by using
a number of samples being the current and most recent cell ids to which the
phone has been associated. For the historical set we use a rolling history of a
number of days of cell movement patterns. The appropriate choice of sample and
history sizes are the subject of experimentation in Section 4.

Intuitively, the algorithm proceeds as follows. If the current samples are, say,
ABC, then a search is made through the history of all traces that contain the
sequence ABC (say DEABCFG), and for each of the resulting traces, the time
will be determined between the time of entry of the current cell and the time of
entry of the next charging-capable cell. These times are then averaged to provide
a prediction of the current time-until-charging-opportunity.

Formally, let a location trace tr be denoted as a sequence of tuples: (l,t,c),
where l denotes location, t denotes the time when the user entered that location
and c is either 1 or 0 depending on whether or not the user can charge the phone
at that location. Let the jth location trace trj be denoted by (lj , tj , cj) let the

ith tuple in this trace be denoted by (lji , t
j
i , c

j
i) and let the last tuple in this trace

be denoted by (ljlast, t
j
last, c

j
last). For a given location trace (lj , tj , cj), let tjcharge

denote the time when the user enters the next charging-location. A location
trace trj is said to be contained in another location trace trk if ∃i(lj0 = lki , lj1 =

lki+1, .., l
j
last = lki+last). Given a location trace (ltoday, ttoday, ctoday), the time in-

terval before the next charging opportunity becomes available is estimated as
(
∑

j(t
j
charge−tjk))/N |(contained(today, j), ljk = ltoday

last), where contained(today, j)
implies that trtoday is contained in trj , and N is the total number of traces for
which contained(today, j) is true.

This statement of the algorithm hides a complicating issue: A hardly mov-
ing or stationary phone still changes cell ids, causing the sample patterns to
be repetitive strings. We handle this using an automated detection algorithm
which finds pairs of cell ids for which repetitive and relatively high-frequency
(minutes not many-hours) back-and-forth changes are observed. These cell ids
are then coalesced into a virtual cell id representing both cells. This procedure
is iteratively run so that multiple cells can be coalesced into a single virtual id.
This procedure is similar to those employed by beacon-based place detection [5]
where many cells can be marked as corresponding to a single “place.”

3.3 Call Time Predictor

We regard telephony as the “crucial application” for mobile phones, in that
users always want to be able to use this application (e.g. for emergency calls or
rendezvous with friends). The “non-crucial applications” should not be allowed
to drain the battery to the stage where the user is deprived of telephony service.
Other applications may be deemed “crucial” (e.g. the navigation application used
in our first motivating example), however for this paper we focus on telephony
as the most compelling example.

To protect the availability of telephony, we need to predict the call time needs
of the user. There are a number of options in order to achieve this. A simple
method would be to ask the user could set a minimum call time level which they
always like to maintain. However, this is not dynamic, so a user must continually
ensure this setting is up-to-date. A more complex but dynamic method, which
does not require user input, is to use past calling behaviour to find the average
number of minutes of call time that the user needs during each hour of the day,
and to use this to get an upper bound on the total call time required within
a given time interval. This can be enhanced by viewing weekdays and weekend
days separately since call behaviour is likely to differ in that time.

Formally, let a call-trace calltr be denoted as a sequence of tuples: (h,t) where
h denotes the hour of theday and t denotes the calltime used in that hour. Let
the jth calltrace calltrj be denoted by (hj , tj), let the ith tuple in this trace be

denoted by (hj
i , t

j
i). The calltime to be used in a given hour hk is estimated as

(
∑

j tjk)/N , where calltrj is a past call-trace, and N is the total number of past
call-traces selected (e.g over the last three months). This algorithm is tested in
the evaluation section and shown to work well.

A third call time predictor is to use a hybrid of the two listed above (or
others) to achieve a conservative prediction. For instance, we could use the policy
“keep twice my average call time available, and a minimum of 10 minutes for
emergencies in addition to the predicted call time”. The correct choice of policy
depends on user preferance such as the user’s perceived annoyance at being
unable to make a call versus their perceived annoyance at having to charge their
phone more often (which is the tradeoff being contemplated).

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Fig. 3. Base curve for a new HP laptop (left) and old Dell laptop (right)

0 50 100 150 200 250 300 350 400
3300

3400

3500

3600

3700

3800

3900

Time (minutes)

V
ol

ta
ge

 le
ve

l (
m

V
)

Fig. 4. Base curve for an HP iPAQ

3.4 Battery Lifetime Predictor

Battery management software and hardware has developed recently and may
provide accurate estimates of the charge level left in the battery. However, this
by itself is insufficient to predict lifetime accurately, since applications may vary
their battery demands over time. Also, batteries have different chemistries with
different reactions to types of load (constant, spiky, etc) and they age. In this
section, we propose a battery lifetime metric that is independent of battery age
and takes into account applications’ battery usage.

One obvious and oft-used method of predicting battery lifetime is to monitor
the rate of drain of the battery and extrapolate this linearly to exhaustion.
However, due to the factors mentioned above, this is not reliable. To illustrate
this, we can examine the battery discharge curves of a number of devices in
idle mode (i.e. not running any applications, but with no power-down power
management software active). We call this diagram the base curve. Figures 3
and 4 show base curves for a new laptop, an old laptop and an HP iPAQ. Since

people do not replace old batteries, either by choice or due to affordability, we
found it important to include an old battery in our experimental setup.

As we can see, while the base curve of new laptop looks linear, that of an old
laptop is highly non-linear (consistently so over many iterations). At the same
time, the base-curve of the PDA (which reported just the voltage level) was also
non-linear and spiky. We were not yet able to obtain traces involving a mobile
phone, but the battery technologies used are similar (Li-Ion).

Our approach is to compare the actual discharge when applications are run-
ning against the measured base curves in order to predict for battery life. This
requires a one-time offline measurement of the base curve, which a device can
do for itself during a period where the user does not need it (similar to battery
reconditioning that users perform today). This can be repeated periodically (e.g.
on the order of months) to make sure that the changing performance of the bat-
tery over its lifetime is compensated for. Our algorithm proceeds as follows: with
a given set of applications running, we measure the discharge speedup factor over
a particular drop in battery energy (or voltage). This is calculated by comparing
the time it would take for the battery to reduce by that amount during idle
(from the base curve), divided by the actual time that it took for the battery
to drop by that amount. In other words, with applications running, we measure
the battery capacity c1 and c2 at two time instances t1 and t2 respectively; we
find time instances t3 and t4 that correspond to battery capacities c1 and c2 on
the base curve. The discharge speedup factor is calculated as (t4 − t3)/(t2 − t1).

We then divide the remaining lifetime of the battery if the device were idle
(from the base curve) by the discharge speedup factor, to obtain the predicted
remaining time for the battery. As we shall see in the evaluation section, this
has proven to be a very accurate measure of battery lifetime remaining.

Although this method allows for the on-the-fly measurement of a set of ap-
plications, one question that might be asked is: can we predict the discharge
speedup factor for a new set of applications that have not previously been ob-
served together? This would allow us to warn the user immediately as they
attempted to start a new application, rather than having to wait until that ap-
plication consumed some power. However, we have discovered that this is not
easily possible, because the discharge speedup factors of applications cannot
simply be added. Intuitively, for applications that do not heavily share system
resources (e.g movie player and web server), energy usage can be added, while for
applications that commonly share system resources (e.g movie player and audio
player), it is not possible to add energy usage profiles. However, once the node
has an opportunity to measure the discharge speedup factor, it can be cached
and later used to flag immediate warnings to the user when they attempt to
start a new application.

3.5 Viceroy and User Interface

The viceroy is CABMAN’s central component. It uses input from the predictors
and directly from the process monitor, in order to decide when action must be
taken using some form of user interface (UI). The main job of the viceroy is to

continually monitor whether the battery lifetime prediction, combined with the
battery requirement of the estimated call time requirement from the call time
predictor, means that the battery will expire before or after the next charging
opportunity. If the energy level is not sufficient to last until the next charging
opportunity, then the viceroy must use the UI (audible or visual signals) to
notify the user. Formally speaking, the user should be warned if t > r − f(m),
where t is an estimate of the time interval before the next charging opportunity
surfaces, r is an estimate of the remaining battery lifetime, m is an estimate of
the required calltime and f(m) is the map from call time to battery lifetime.

When warned, the user may be able to correct matters by (i) killing some
battery-hungry applications (up to and including powering down the device as
a whole), (ii) change their behaviour so as to make less power demands of the
device, (iii) plan to charge the device according to the timescale that the viceroy
predicts the device will last, or (iv) accept and understand that they may lose
the ability to make calls (or, in general, execute critical applications).

When the user is at a place with a charging opportunity (as may often be the
case, e.g. for users with a home charge and office charger), the viceroy’s job is
to decide whether to use the UI to ask the user to charge the device, or whether
the battery level is sufficient to reach the next charging opportunity.

4 Evaluation

We have implemented a CABMAN prototype for Linux using Java, Perl, shell-
scripts and C++. The purpose of this prototype was to carry out a feasibility
study by evaluating the performance of the prediction algorithms. The ability
to make predictions with acceptable errors is a key indicator of the real-life
performance of CABMAN.

4.1 Charging Opportunity Predictor

To evaluate the performance of the charging opportunity predictor and call time
predictor we used a large trace of measurements of real users captured in MIT’s
Reality Mining project [1] which in turn used context logging functionality from
the University of Helsinki. This excellent data set was gathered by deploying
Nokia 6600 phones to more than 80 subjects for around nine months.

For charging opportunity, we used the cell id logs of the phones, and first
used the previously-described clustering algorithm to create a smaller set of
“virtual cells” for each device, where cells in the same physical location were
clustered. Then, by hand, we identified out virtual cells which corresponded to
charging opportunities (“charging stations”). For half the subjects, we chose a
single charging station where the device spent most nights. For the other half, we
chose two charging stations where the device spent most nights, and where the
device spent most time during the day. In real life deployment, charging stations
could be identified by monitoring the cells where charging actually took place.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

History Size (Number of days)

P
re

di
ct

io
n

E
rr

or
 (

%
)

sample size=1
sample size=2
sample size=5
sample size=10
sample size=15

Fig. 5. Charging opportunity prediction error for various sample sizes and history sizes

We report the percentage prediction error averaged over the traces of all
subjects, varying our algorithm’s parameters of sample size and history size, in
Figure 5. As we expect, an increasing sample size generally increases accuracy
(the curve is lower) and reliably (the curve wavers less) as more closely-fitting
historical data is used in prediction, with a sample size of 1 being only the
current cell id used, and a sample size of 15 being the previous 15 (possibly
“virtual”) cell ids used. The effect of increasing sample size appears to bottom
out at around 10. From a tested range of 1–60 days, history size appears to be
optimal at 40 days; intuitively more history provides a longer averaging period,
but longer-term changes in user behaviour (e.g. the change of home or workplace)
mean that use of too much history has a negative effect.

Using the parameters of 10 samples and a 40 day history, the average pre-
diction error across the 80 user, 9 month trace is 16%, which corresponded to
an absolute error of 12 minutes on average. This indicates that our charging op-
portunity prediction algorithm is highly likely to give useful results in practice,
and is a key result for the feasibility of CABMAN.

We also evaluated the algorithm by conditioning it on the day type (weekend
or weekday), that is, if the current location trace is that of a weekday then we
compare it against the past location traces of only weekdays. We did not notice
any significant difference in performance.

4.2 Call Time Predictor

The Reality Mining traces are also used to evaluate the various possible algo-
rithms for prediction of the call time needs of users. Using the call logs of these

8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

Hour of day

P
re

di
ct

io
n

E
rr

or
 (

se
co

nd
s)

8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

Hour of day

P
re

di
ct

io
n

E
rr

or
 (

se
co

nd
s)

Fig. 6. Absolute call time prediction error for weekdays (left) and weekends (right)

0 10 20 30 40 50
70

75

80

85

90

95

100

Minutes

N
um

be
r

of
 c

al
ls

 (
%

)

0 5 10 15 20
50

55

60

65

70

75

80

85

90

95

100

Number of calls

N
um

be
r

of
 h

ou
rs

 (
%

)

Fig. 7. CDF of the length of phone calls (left) and the number of calls made during
each hour (right)

traces, we can execute the prediction algorithm described previously, where the
number of minutes of call time used in a given hour of the day is predicted by the
average number of minutes used in previous days. The average prediction error
of this algorithm is shown in Figure 6. We can see that, as one might expect, it
is easier to predict call time requirements for the middle of the day than it is for
evenings (where users typically make many calls), and easier for weekdays than
weekends. However, even in the worst case the average prediction error is under
a minute out of the hour.

The low prediction errors seem suspiciously good, until one examines the
actual calling pattern of users, as shown in Figure 7. These CDFs show that
the typical call is short (71% calls are less than a minute, 90% calls are less
than 5 minutes), and in a typical hour very few calls are made (75% with 2
calls or fewer), although both of these curves have a “long tail”, which account
for the occasional long call. While we obviously cannot account for the latter
case (how can we predict an incoming call from an occasionally-in-contact friend

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Base Curve
Actual discharge curve (mpeg + wget)
Derived discharge curve (mpeg + wget)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Base Curve
Actual discharge curve (mpeg + apache)
Derived discharge curve (mpeg + apache)

Fig. 8. Base curve together with discharge curves (actual and derived) for the new HP
laptop (left) and old Dell laptop (right)

0 50 100 150 200 250 300 350 400
3300

3400

3500

3600

3700

3800

3900

Time (minutes)

V
ol

ta
ge

 le
ve

l (
m

V
)

Base Curve
Actual discharge curve (mpeg)
Derived discharge curve (mpeg)

Cutoff voltage

Fig. 9. Base curve together with discharge curves (actual and derived) for HP iPAQ

when humans cannot?), the type of functionality we are looking to preserve in
CABMAN is the crucial application of telephony for rendezvous, emergencies,
or suchlike. The user does have a choice to specify the additional amount of call
time they would like to reserve over and above the predicted call time.

Therefore, the short calls forming the majority of usage are those that interest
us, and the algorithm presented is shown to provide a feasible way of dynamically
estimating the call requirements of the users in this large trace. Particularly
when combined with user-specified minimum thresholds for call-time-remaining
(as discussed previously), we believe that CABMAN can make useful estimates
for user needs for the crucial application of telephony.

4.3 Battery-lifetime Predictor

In order to evaluate the performance of the battery-lifetime predictor, we ex-
perimented with three different machines: an HP laptop with a new battery,

a Dell laptop with a very old battery and a regular HP iPAQ PDA. We first
obtained the base curves for all the three machines as shown in Figures 3 and 4.
Next, we obtained the actual discharge curves for a set of applications (web,
music and video) and all combinations of these applications running together (7
combinations) on all three machines. We simultaneously ran our own prediction
algorithm for battery lifetime (using a 2 minute observation window to obtain a
prediction), and monitored the device’s own battery lifetime prediction via the
ACPI interface.

As previously described, our prediction algorithm essentially calculates the
discharge speedup factor based on observation of the running set of applications,
and uses it to predict the remaining battery lifetime. In the process, the algorithm
implicitly derives a predicted discharge curve for the given set of applications,
which is useful in order to illustrate the performance of the algorithm.

Figures 8 and 9 show the base curve for the three devices together with the
actual and derived discharge curves for a web application and movie player exe-
cuting together. In all cases the actual discharge curve and the derived discharge
curve track each other closely, showing that our algorithm performs well. Note
that in the case of iPAQ, the discharge curve is a measure of the instantaneous
voltage level as opposed to the battery charge level as in the case of laptops.
The iPAQ fails when the voltage level falls below a certain threshold. We have
not yet been able to test this algorithm on a mobile phone platform, but we ex-
pect similar performance due to similar battery chemistry (Li-Ion) and similarly
multi-functional operating systems on newer phones.

Table 1. Comparing accuracy of our algorithm with ACPI’s

Average Prediction Error
Machine

Our algorithm ACPI

New HP laptop 1.2% 23.5%

Old Dell laptop 6.1% 120.2%

HP iPAQ 3% 52.2%

Table 1 summarises the performance of our battery prediction algorithm
against the devices’ own battery lifetime predictors (obtained via ACPI), across
experiments using all 7 combinations of applications. Our algorithm clearly wins,
with average errors of 1%, 3% and 6% while ACPI’s estimates are (on average)
over 100% off (i.e. predicting more than double the actual lifetime) in the case
of an older battery with a non-linear discharge curve. In absolute terms, we are
able to predict battery lifetime with an average accuracy between 4 minutes for
the new laptop and 12 minutes for the iPAQ. This experiment shows that our
battery prediction algorithm is capable of providing accurate enough information
to support the feasibility of CABMAN.

5 Related Work

Prior research on dealing with the limited battery lifetime problem has con-
centrated on optimizing energy at different levels of the stack, starting with
hardware all the way up to the application layer [6, 3, 4], including compiler-
based energy optimizations [8, 7]. There has been limited research on managing
battery and treating energy as a first-class operating system resource. To the
best of our knowledge, ECOSystem [15] is the only piece of work that takes this
approach. On mobile devices, the interfaces that inform the user of the battery
levels (such as ACPI [2]) have not kept up with the evolution of the capabilities
of these devices for context-sensing, and the always-on multi-functional roles
they promise to play in the near future.

There is some literature on predicting location of the user based on mobility
traces [5, 9]. It is worth noting, however, that predicting the location of the user
is not always the end goal. In our case, location traces are utilized to predict
when the next charging opportunity will be available, and hence the algorithm
had to be tailored to make this prediction accurately. We are not aware of any
research on processing user call logs to predict future calltime requirements.

Our battery-lifetime prediction algorithm outperforms existing algorithms
such as ACPI’s [2]. Prior research on predicting battery lifetime has focussed on
the use of analytical methods in studying battery characteristics and deriving
models for battery-lifetime prediction offline [11–13]. There has also been some
research on making online predictions based on the execution history of applica-
tions [6] under dynamically changing workloads. The idea of profiling the battery
in idle mode offline to make predictions online has also been proposed [14]. Our
approach is simpler, more accurate and uses the idea of a discharge speedup fac-
tor to predict the remaining battery lifetime for constant workloads online and
in an application independent manner.

6 Conclusions

We have described the motivation behind our context-aware battery manage-
ment system CABMAN, in that battery management using only the current
battery level as an indicator of scarcity is both too conservative in some situations
and too optimistic in others. We describe three key components of CABMAN:
(1). the use of context information such as location to predict the next charg-
ing opportunity, (2). more accurate battery life prediction based on a discharge
speedup factor and (3). the notion of crucial applications such as telephony.
For each of these components, we have proposed a new prediction algorithm,
and we have evaluated these algorithms using traces of real users and against
experiments on real devices. Our test results are very positive, with charging
opportunity prediction exhibiting an average error of 12 minutes, battery life
prediction having average errors of between 4 and 12 minutes depending on the
device used (significantly outperforming the standard prediction algorithms on
the devices tested). For call time prediction, we show that users call patterns

are typically quite sparse, so our prediction algorithm has average errors mea-
sured in seconds, though in actual deployment a “minimum call time remaining”
setting by the user is likely to be useful.

The next and obvious step for CABMAN is to integrate these algorithms
onto a mobile phone platform, and then deploy it and study its use; until then,
we have not quantified the value of CABMAN to users, which is the ultimate
measure of the system.

References

1. Reality Mining, http://reality.media.mit.edu/.
2. Advanced Configuration and Power Interface (ACPI), http://www.acpi.info/.
3. M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: interfaces for

better power management. In MobiSys ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and services, 2004.

4. R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang. The
case for cyber foraging. In Proceedings of the 10th workshop on ACM SIGOPS
European workshop, 2002.

5. K. L. et al. Adaptive on-device location recognition. In Proceedings of Pervasive,
2004.

6. J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.
In SOSP ’99: Proceedings of the seventeenth ACM symposium on Operating systems
principles, 1999.

7. T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Code transformations
for energy-efficient device management. In IEEE Transactions on Computers, 2004.

8. U. Kremer, J. Hicks, and J. Rehg. A compilation framework for power and en-
ergy management on mobile computers. In Proceedings of the 14th International
Workshop on Parallel Computing (LCPC’01), 2001.

9. J. Krumm and E. Horvitz. Predestination: Inferring destinations from partial
trajectories. In Proceedings of Ubicomp, 2006.

10. A. LaMarca, Y. Chawathe, and S. C. et al. Place lab: Device positioning using
radio beacons in the wild. In Proceedings of Pervasive, 2005.

11. D. Panigrahi, S. Dey, R. Rao, K. Lahiri, C. Chiasserini, and A. Raghunathan.
Battery life estimation of mobile embedded systems. In VLSID ’01: Proceedings
of the The 14th International Conference on VLSI Design (VLSID ’01), 2001.

12. D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery lifetime prediction for
energy-aware computing. In ISLPED ’02: Proceedings of the 2002 international
symposium on Low power electronics and design, 2002.

13. P. Rong and M. Pedram. Remaining battery capacity prediction for lithium-ion
batteries. In Conference of Design Automation and Test, 2003.

14. Y. Wan, R. Wolski, and C. Krintz. Online prediction of battery lifetime for em-
bedded and mobile devices. In Proceedings of PACS, 2003.

15. H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem: managing energy
as a first class operating system resource. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages and
operating systems, 2002.

