
Context-aware Battery Management for Mobile Phones

Nishkam Ravi, James Scott**, Lu Han* and Liviu Iftode*
Intel Corporation, Santa Clara, USA

*Department of Computer Science, Rutgers University, USA
**Microsoft Research, Cambridge, UK

{nishkam.ravi@intel.com, jamesscott@acm.org, {luhan,iftode}@cs.rutgers.edu}

Abstract

In this paper, we propose a system for context-
aware battery management that warns the user when
it detects that the phone battery can run out before
the next charging opportunity is encountered. At the
heart of this system, are algorithms that predict: (1)
when the next charging opportunity will be available,
(2) how much call-time will be required by the user
in the interim, and (3) how long the battery will last
if the current set of applications continue to execute.
We propose algorithms that process user’s location
traces and call-logs for making some of these predic-
tions. We also propose a technique to predict battery
consumption of applications. We present the design
of the system and demonstrate its feasibility by ex-
perimentally showing that each of the prediction al-
gorithms can perform with fairly high accuracy.

1 Introduction

Mobile devices such as smart phones are riding
the wave of Moore’s Law, providing increasing func-
tionality due to rapid improvements in processing
power, storage capacities, graphics, high-speed con-
nectivity, etc. However, the main problem faced
by these devices is battery management, since bat-
tery capacities are not experiencing the same expo-
nential growth curve as other technologies such as
processing power and storage. While there is ongo-
ing research in discovering and exploiting ambient
energy sources, it is highly likely that energy will
remain the key bottleneck for mobile devices in the
near future.

The main implication of battery management is
the need for interacting and involving the user of the

device in managing this resource. This interaction
takes two main forms: (i) Users must be informed
of the energy status of a device so they can decide
how to prioritize amongst the various tasks that
the device can perform (phone calls, gaming, mes-
saging, media creation/playback, etc). (ii) Users
must physically plug in a device and surrender its
mobility for a period of time in order to charge it
when necessary. The current solution for this user
interaction takes the form of a battery meter, aug-
mented with the ubiquitous “battery low” audio sig-
nals, and, on some devices, with a remaining time
estimate at current power consumption.

This de facto user interface standard has re-
mained relatively unchanged for a number of years.
For mobile phones, this system is arguably suffi-
cient for users to get into habits of charging their
devices at suitable periods, as they know their call
patterns, and the devices have been optimized for
low-power standby modes. For laptops, these de-
vices are relatively rarely used in situations where
power is unavailable, and, unlike with phones, users
are accustomed to bringing the power adaptor with
them.

However, a number of factors have conspired to
change this comfortable status quo. Firstly, conver-
gence is leading to more multi-functional computing
devices with the always-on expectation of phones.
Secondly, WLAN interfaces such as Bluetooth and
802.11 have become ubiquitous, and during data
transfer (though not during idle), they are rela-
tively hungry consumers of energy. Thirdly, perva-
sive computing applications have provided reasons
for mobile devices to be executing always-on back-
ground applications. These applications use sens-
ing, computation and communication and, there-
fore, break the low standby-mode power profile that

Sixth Annual IEEE International Conference on Pervasive Computing and Communications

0-7695-3113-X/08 $25.00 © 2008 IEEE
DOI 10.1109/PERCOM.2008.108

224

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

users have become accustomed to. The time has
come to revisit the issue of battery management for
mobile end-user devices.

The key observation that we make is that a sim-
ple “battery remaining” or even “time remaining”
do not enable the user to make the right decisions
as to the spend of the energy budget and the re-
quest for recharging. The second observation is that
context information (location and time) determines
battery recharge schedules [4].

In this paper, we propose a new context-aware
battery management architecture for mobile devices
(henceforth CABMAN), based on three principles:

• The availability of crucial applications to users
should not be compromised by non-crucial ap-
plications.

• The opportunities for charging should be pre-
dicted to allow devices to determine if they
have scarce or plentiful energy, instead of us-
ing absolute battery level as the guide

• Context, such as location information, can be
used to predict charging opportunities

To achieve these goals, we propose three “predic-
tion” algorithms for: the next charging opportunity,
the call time requirements of the user over a period
of time (assuming that telephony is the most critical
application), and the “discharge speedup factor” of
the set of non-crucial applications running.

In what follows, we present CABMAN’s system
design (Section 3) followed by an evaluation of the
system using real devices and real traces of human
mobile phone activity (Section 4), followed by re-
lated work (Section 5) and conclusions (Section 7).

2 Problem Definition

The key role of our battery manager is to be
able to answer the query: Will the phone battery
last until the next charging opportunity is encoun-
tered? In order to answer this query without involv-
ing the user, the battery manager should be able to
answer the following three questions (1) when the
next opportunity for recharging the battery will be
available and hence what is the total battery life-
time available to the user? (2) what fraction of this
battery lifetime will be consumed by critical appli-
cations such as telephony? and (3) what fraction
of this battery lifetime can be left for use by non-
critical applications? For the purpose of this paper,

Figure 1. CABMAN system architecture

we assume that telephony (i.e making and receiving
calls) is the critical application and the daemon ap-
plications running on the phone are non-critical. In
order to solve these three subproblems, we need a
system that can monitor user context and sense the
battery charge level of the device; a set of algorithms
for making predictions and a central component for
assimilating the information together and warning
the user appropriately. In the following section, we
present the design of such a system along with the
set of prediction algorithms.

3 CABMAN System Design

CABMAN consists of eight components (Fig-
ure 1) divided into three categories: system-specific
monitors, predictors, and the viceroy/UI, which we
now discuss in turn, paying particular focus to the
three prediction algorithms (for charging opportu-
nities, call time needs, and battery lifetime), and
how they are accomplished. These algorithms are
evaluated in Section 4.

3.1 System-specific Components

In order to perform context-aware battery man-
agement, we need to detect various data from the
device’s operating system, including battery status,
list of processes running on the device, the calls
made on the device (under the assumption that
this will be regarded as a “crucial” application),
and finally, some context information to allow us

225

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

to predict the next charging opportunity. The Pro-
cess Monitor is responsible for keeping track of the
processes running on the device and informing the
viceroy whenever a new process is detected. The
Battery Monitor probes the battery periodically and
enquires about remaining charge and voltage level.
The Context Monitor is responsible for sensing and
storing context information (such as location) on
the phone. The Call Monitor logs communica-
tion (incoming/outgoing calls, incoming/outgoing
SMSs).

The purpose of separating out system-specific
functionality is to make clear the requirements that
CABMAN has from the underlying operating sys-
tem, and thus facilitate porting of CABMAN to
the multiple platforms used for mobile phones (e.g.
Symbian, Linux, Windows Mobile).

3.2 Charging Opportunity Predictor

The crux of CABMAN is that a phone should de-
termine if a charging opportunity is soon enough for
the battery to “last” until then (by which we mean
maintaining the ability to execute the crucial appli-
cation). If this is true, then CABMAN should not
inconvenience the user with unnecessary warnings
or actions such as going into low-power modes with
reduced functionality. If this is false, then even if the
phone battery is relatively full, CABMAN should
warn the user that they risk a dead battery.

Since a growing number of mobile phones can
sense their location, either through GPS or beacon-
based techniques such as Place Lab [9], we have cho-
sen to focus on location sensing as a way of inferring
charging opportunity in this preliminary feasibility
study. The disadvantage of using only location in-
formation in inferring charging opportunity is that
it does not accommodate for mobile chargers (such
as those in cars). Additional context information,
such as time-of-day, speed, presence of other wire-
less devices, and charge-logs can help alleviate this
problem. In this preliminary study, we only evalu-
ate with respect to static charging opportunities.

3.2.1 Cell-based charging opportunity pre-
diction algorithm

Many phones are capable of detecting the id of the
current cell that the phone is connected to. We
therefore propose an algorithm that makes use of
this data. If richer location information were avail-
able, either based on more cells, detection of other

beacon types (WiFi APs, etc), or direct positioning
information (GPS, A-GPS, etc), that could be used
instead, however fewer phones currently have such
capabilities. The basis of this algorithm is that cer-
tain cells (e.g. those at home or perhaps the work-
place) are marked as being charging opportunities,
and the time until the user is expected to reach those
cells is used as the prediction. The choice of which
cells are marked is easily accomplished using the
battery monitor to determine when charging occurs
and marking the cells in which this normally occurs.
User feedback can also be implicitly integrated —
when the phone asks for more charge, if the user
often “refuses” by not charging the phone, then the
cell can be unmarked.

The prediction of when marked cells will be
reached is accomplished by pattern-matching the
current pattern of cell movements against a larger
historical set of cell movement patterns. We repre-
sent the current pattern by using a number of sam-
ples being the current and most recent cell ids to
which the phone has been associated. For the his-
torical set we use a rolling history of a number of
days of cell movement patterns. The appropriate
choice of sample and history sizes are the subject of
experimentation in Section 4.

Intuitively, the algorithm proceeds as follows. If
the current samples are, say, ABC, then a search is
made through the history of all traces that contain
the sequence ABC (say DEABCFG), and for each
of the resulting traces, the time will be determined
between the time of entry of the current cell and
the time of entry of the next charging-capable cell.
These times are then averaged to provide a predic-
tion of the current time-until-charging-opportunity.

Formally, let a location trace tr be denoted as a
sequence of tuples: (l,t,c), where l denotes location,
t denotes the time when the user entered that lo-
cation and c is either 1 or 0 depending on whether
or not the user can charge the phone at that loca-
tion. Let the jth location trace trj be denoted by
(lj, tj , cj) let the ith tuple in this trace be denoted
by (lji , t

j
i , c

j
i) and let the last tuple in this trace be

denoted by (ljlast, t
j
last, c

j
last). For a given location

trace (lj, tj , cj), let tjcharge denote the time when the
user enters the next charging-location. A location
trace trj is said to be contained in another location
trace trk if ∃i(lj0 = lki , lj1 = lki+1, .., l

j
last = lki+last).

Given a location trace (ltoday, ttoday, ctoday), the
time interval before the next charging opportunity
becomes available is estimated as (

∑
j(t

j
charge −

226

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

tjk))/N |(contained(today, j), ljk = ltoday
last), where

contained(today, j) implies that trtoday is contained
in trj , and N is the total number of traces for which
contained(today, j) is true.

This statement of the algorithm hides a compli-
cating issue: A hardly moving or stationary phone
still changes cell ids, causing the sample patterns
to be repetitive strings. We handle this using an
automated detection algorithm which finds pairs
of cell ids for which repetitive and relatively high-
frequency (minutes not many-hours) back-and-forth
changes are observed. These cell ids are then coa-
lesced into a virtual cell id representing both cells.
This procedure is iteratively run so that multiple
cells can be coalesced into a single virtual id. This
procedure is similar to those employed by beacon-
based place detection [8] where many cells can be
marked as corresponding to a single “place.”

3.3 Call Time Predictor

We regard telephony as the “crucial application”
for mobile phones, in that users always want to be
able to use this application (e.g. for emergency calls
or rendezvous with friends). The “non-crucial appli-
cations” should not be allowed to drain the battery
to the stage where the user is deprived of telephony
service. Other applications may be deemed “cru-
cial” (e.g. the navigation application used in our
first motivating example), however for this paper
we focus on telephony as the most compelling ex-
ample.

To protect the availability of telephony, we need
to predict the call time needs of the user. There
are a number of options in order to achieve this. A
simple method would be to ask the user could set a
minimum call time level which they always like to
maintain. However, this is not dynamic, so a user
must continually ensure this setting is up-to-date.
A more complex but dynamic method, which does
not require user input, is to use past calling behavior
to find the average number of minutes of call time
that the user needs during each hour of the day,
and to use this to get an upper bound on the total
call time required within a given time interval. This
can be enhanced by viewing weekdays and weekend
days separately since call behavior is likely to differ
in that time.

Formally, let a call-trace calltr be denoted as a
sequence of tuples: (h,t) where h denotes the hour
of the day and t denotes the call-time used in that
hour. Let the jth calltrace calltrj be denoted by

(hj , tj), let the ith tuple in this trace be denoted
by (hj

i , t
j
i). The calltime to be used in a given hour

hk is estimated as (
∑

j tjk)/N , where calltrj is a
past call-trace, and N is the total number of past
call-traces selected (e.g over the last three months).
This algorithm is tested in the evaluation section
and shown to work well.

The third option is to use a hybrid of the two
listed above to achieve a conservative prediction.
For instance, we could use the policy “keep twice
my average call time available, and a minimum of
10 minutes for emergencies in addition to the pre-
dicted call time”. The correct choice of policy de-
pends on user preference such as the user’s perceived
annoyance at being unable to make a call versus
their perceived annoyance at having to charge their
phone more often (which is the tradeoff being con-
templated).

3.4 Battery Lifetime Predictor

Battery management software and hardware has
developed recently and may provide accurate esti-
mates of the charge level left in the battery. How-
ever, this by itself is insufficient to predict lifetime
accurately, since applications may vary their bat-
tery demands over time. Also, batteries have dif-
ferent chemistries with different reactions to types
of load (constant, spiky, etc) and they age. In this
section, we propose a battery lifetime metric that is
independent of battery age and takes into account
applications’ battery usage.

One obvious and oft-used method of predicting
battery lifetime is to monitor the rate of drain of the
battery and extrapolate this linearly to exhaustion.
However, due to the factors mentioned above, this
is not reliable. To illustrate this, we can examine
the battery discharge curves of a number of devices
in idle mode (i.e. not running any applications, but
with no power-down power management software
active). We call this diagram the base curve. Fig-
ures 2 and 3 show base curves for a new laptop,
an old laptop and an HP iPAQ. Since many users
do not replace old batteries, either by choice or due
to affordability, we found it important to include an
old battery in our experimental setup.

As we can see, while the base curve of new lap-
top looks linear, that of an old laptop is highly non-
linear (consistently so over many iterations). At
the same time, the base-curve of the PDA (which
reported just the voltage level) was also non-linear

227

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Figure 2. Base curve for a new HP laptop
(top) and old Dell laptop (bottom)

and spiky. We were not yet able to obtain traces
involving a mobile phone, but the battery technolo-
gies used are similar (Li-Ion).

Our approach is to compare the actual discharge
when applications are running against the measured
base curves in order to predict for battery life. This
requires a one-time offline measurement of the base
curve, which a device can do for itself during a pe-
riod where the user does not need it (similar to
battery reconditioning that users perform today).
This can be repeated periodically (e.g. on the order
of months) to make sure that the changing perfor-
mance of the battery over its lifetime is compen-
sated for. Our algorithm proceeds as follows: with
a given set of applications running, we measure the
discharge speedup factor over a particular drop in
battery energy (or voltage). This is calculated by
comparing the time it would take for the battery to
reduce by that amount during idle (from the base

0 50 100 150 200 250 300 350 400
3300

3400

3500

3600

3700

3800

3900

Time (minutes)

V
ol

ta
ge

 le
ve

l (
m

V
)

Figure 3. Base curve for an HP iPAQ

curve), divided by the actual time that it took for
the battery to drop by that amount. In other words,
with applications running, we measure the battery
capacity c1 and c2 at two time instances t1 and t2
respectively; we find time instances t3 and t4 that
correspond to battery capacities c1 and c2 on the
base curve. The discharge speedup factor is calcu-
lated as (t4 − t3)/(t2 − t1).

We then divide the remaining lifetime of the bat-
tery if the device were idle (from the base curve)
by the discharge speedup factor, to obtain the pre-
dicted remaining time for the battery. As we shall
see in the evaluation section, this has proven to be
a very accurate measure of battery lifetime remain-
ing.

Although this method allows for the on-the-fly
measurement of a set of applications, one question
that might be asked is: can we predict the discharge
speedup factor for a new set of applications that
have not previously been observed together? This
would allow us to warn the user immediately as they
attempted to start a new application, rather than
having to wait until that application consumed some
power. However, we have discovered that this is
not easily possible, because the discharge speedup
factors of applications cannot simply be added. In-
tuitively, for applications that do not make use of
the same system resources (e.g movie player and
web server), energy usage can be added, while for
applications that share system resources (e.g movie
player and audio player), it is not possible to add
energy usage profiles. However, once the node has
an opportunity to measure the discharge speedup
factor, it can be cached and later used to flag im-

228

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

mediate warnings to the user when they attempt to
start a new application.

3.5 Viceroy and User Interface

The viceroy is CABMAN’s central component.
It uses input from the predictors and directly from
the process monitor, in order to decide when ac-
tion must be taken using some form of user inter-
face (UI). The main job of the viceroy is to contin-
ually monitor whether the battery lifetime predic-
tion, combined with the battery requirement of the
estimated call time requirement from the call time
predictor, means that the battery will expire before
or after the next charging opportunity. If the energy
level is not sufficient to last until the next charging
opportunity, then the viceroy must use the UI (au-
dible or visual signals) to notify the user. Formally
speaking, the user should be warned if t > r−f(m),
where t is an estimate of the time interval before the
next charging opportunity surfaces, r is an estimate
of the remaining battery lifetime, m is an estimate
of the required calltime and f(m) is the map from
call time to battery lifetime.

When warned, the user may be able to correct
matters by (i) killing some battery-hungry applica-
tions (up to and including powering down the de-
vice as a whole), (ii) change their behavior so as to
make less power demands of the device, (iii) plan
to charge the device according to the timescale that
the viceroy predicts the device will last, or (iv) ac-
cept and understand that they may lose the ability
to make calls (or, in general, execute critical appli-
cations).

When the user is at a place with a charging op-
portunity (as may often be the case, e.g. for users
with a home charge and office charger), the viceroy’s
job is to decide whether to use the UI to ask the user
to charge the device, or whether the battery charge
level is sufficient to reach the next charging oppor-
tunity.

4 Evaluation

We have implemented a CABMAN prototype for
both Linux and Symbian OS. The purpose of this
prototype was to carry out a feasibility study by
evaluating the performance of the prediction algo-
rithms. The ability to make predictions with ac-
ceptable errors is a key indicator of the real-life per-
formance of CABMAN.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

History Size (Number of days)

P
re

di
ct

io
n

E
rr

or
 (

%
)

sample size=1
sample size=2
sample size=5
sample size=10
sample size=15

Figure 4. Charging opportunity prediction
error for various sample sizes and history
sizes

4.1 Charging Opportunity Predictor

To evaluate the performance of the charging op-
portunity predictor and call time predictor we used
a large trace of measurements of real users captured
in MIT’s Reality Mining project [1] which in turn
used context logging functionality from the Univer-
sity of Helsinki. This excellent data set was gath-
ered by deploying Nokia 6600 phones to more than
80 subjects for around nine months.

For charging opportunity, we used the cell id
logs of the phones, and first used the previously-
described clustering algorithm to create a smaller
set of “virtual cells” for each device, where cells in
the same physical location were clustered. Then,
by hand, we identified out virtual cells which corre-
sponded to charging opportunities (“charging sta-
tions”). For half the subjects, we chose a single
charging station where the device spent most nights.
For the other half, we chose two charging stations
where the device spent most nights, and where the
device spent most time during the day. In real life
deployment, charging stations could be identified by
monitoring the cells where charging actually took
place.

We report the percentage prediction error aver-
aged over the traces of all subjects, varying our algo-
rithm’s parameters of sample size and history size,

229

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

in Figure 4. As we expect, an increasing sample size
generally increases accuracy (the curve is lower) and
reliability (the curve wavers less) as more closely-
fitting historical data is used in prediction, with a
sample size of 1 being only the current cell id used,
and a sample size of 15 being the previous 15 (possi-
bly “virtual”) cell ids used. The effect of increasing
sample size appears to bottom out at around 10.
From a tested range of 1–60 days, history size ap-
pears to be optimal at 40 days; intuitively more his-
tory provides a longer averaging period, but longer-
term changes in user behavior (e.g. the change of
home or workplace) mean that use of too much his-
tory has a negative effect.

Using the parameters of 10 samples and a 40 day
history, the average prediction error across the 80
user, 9 month trace is 16%, which corresponded to
an absolute error of 12 minutes on average. This
indicates that our charging opportunity prediction
algorithm is highly likely to give useful results in
practice, and is a key result for the feasibility of
CABMAN.

We also evaluated the algorithm by conditioning
it on the day type (weekend or weekday), that is,
if the current location trace is that of a weekday
then we compare it against the past location traces
of only weekdays. We did not notice any significant
difference in performance.

4.2 Call Time Predictor

The Reality Mining traces are also used to eval-
uate the various possible algorithms for prediction
of the call time needs of users. Using the call logs
of these traces, we can execute the prediction al-
gorithm described previously, where the number of
minutes of call time used in a given hour of the day
is predicted by the average number of minutes used
in previous days. The average prediction error of
this algorithm is shown in Figure 5. We can see
that, as one might expect, it is easier to predict call
time requirements for the middle of the day than
it is for evenings (where users typically make many
calls), and easier for weekdays than weekends. How-
ever, even in the worst case the average prediction
error is under a minute out of the hour.

The low prediction errors seem suspiciously good,
until one examines the actual calling pattern of
users, as shown in Figure 6. These Cumulative
Distribution Functions(CDFs) show that the typ-
ical call is short (71% calls are less than a minute,

8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

Hour of day

P
re

di
ct

io
n

E
rr

or
 (

se
co

nd
s)

8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

Hour of day

P
re

di
ct

io
n

E
rr

or
 (

se
co

nd
s)

Figure 5. Absolute call time prediction er-
ror for weekdays (top) and weekends (bot-
tom)

90% calls are less than 5 minutes), and in a typi-
cal hour very few calls are made (75% with 2 calls
or fewer), although both of these curves have a
“long tail”, which account for the occasional long
call. While we obviously cannot account for the lat-
ter case (how can we predict an incoming call from
an occasionally-in-contact friend when humans can-
not?), the type of functionality we are looking to
preserve in CABMAN is the crucial application of
telephony for rendezvous, emergencies, or suchlike.
The user does have a choice to specify the additional
amount of call time they would like to reserve over
and above the predicted call time.

Therefore, the short calls forming the majority
of usage are those that interest us, and the algo-
rithm presented is shown to provide a feasible way
of dynamically estimating the call requirements of
the users in this large trace. Particularly when
combined with user-specified minimum thresholds
for call-time-remaining (as discussed previously), we

230

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50
70

75

80

85

90

95

100

Minutes

N
um

be
r

of
 c

al
ls

 (
%

)

0 5 10 15 20
50

55

60

65

70

75

80

85

90

95

100

Number of calls

N
um

be
r

of
 h

ou
rs

 (
%

)

Figure 6. Cumulative Distribution Function
of the length of phone calls (top) and the
number of calls made during each hour
(bottom)

believe that CABMAN can make useful estimates
for user needs for the crucial application of tele-
phony.

4.3 Battery-lifetime Predictor

In order to evaluate the performance of the
battery-lifetime predictor, we experimented with
three different machines: an HP laptop with a new
battery, a Dell laptop with a very old battery and a
regular HP iPAQ PDA. We first obtained the base
curves for all the three machines as shown in Fig-
ures 2 and 3. Next, we obtained the actual discharge
curves for a set of applications (web, music and
video) and all combinations of these applications
running together (7 combinations) on all three ma-
chines. We simultaneously ran our own prediction

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Base Curve
Actual discharge curve (mpeg + wget)
Derived discharge curve (mpeg + wget)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Time (minutes)

R
em

ai
ni

ng
 b

at
te

ry
 c

ha
rg

e
le

ve
l(%

)

Base Curve
Actual discharge curve (mpeg + apache)
Derived discharge curve (mpeg + apache)

Figure 7. Base curve together with dis-
charge curves (actual and derived) for the
new HP laptop (top) and old Dell laptop
(bottom)

algorithm for battery lifetime (using a 2 minute ob-
servation window to obtain a prediction), and mon-
itored the device’s own battery lifetime prediction
via the ACPI interface. Advanced Configuration
and Power Interface (ACPI) defines common inter-
faces for device configuration and power manage-
ment on Linux-based systems.

As previously described, our prediction algo-
rithm essentially calculates the discharge speedup
factor based on observation of the running set of
applications, and uses it to predict the remaining
battery lifetime. In the process, the algorithm im-
plicitly derives a predicted discharge curve for the
given set of applications, which is useful in order to
illustrate the performance of the algorithm.

Figures 7 and 8 show the base curve for the three
devices together with the actual and derived dis-

231

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300 350 400
3300

3400

3500

3600

3700

3800

3900

Time (minutes)

V
ol

ta
ge

 le
ve

l (
m

V
)

Base Curve
Actual discharge curve (mpeg)
Derived discharge curve (mpeg)

Cutoff voltage

Figure 8. Base curve together with dis-
charge curves (actual and derived) for HP
iPAQ

Table 1. Comparing accuracy of our algo-
rithm with ACPI’s

Average Prediction Error
Machine

Our algorithm ACPI

New HP laptop 1.2% 23.5%
Old Dell laptop 6.1% 120.2%
HP iPAQ 3% 52.2%

charge curves for a web application and movie player
executing together. In all cases the actual discharge
curve and the derived discharge curve track each
other closely, showing that our algorithm performs
well. Note that in the case of iPAQ, the discharge
curve is a measure of the instantaneous voltage level
as opposed to the battery charge level as in the
case of laptops. The iPAQ fails when the voltage
level falls below a certain threshold. We have not
yet been able to test this algorithm on a mobile
phone platform, but we expect similar performance
due to similar battery chemistry (Li-Ion) and sim-
ilarly multi-functional operating systems on newer
phones.

Table 1 summarizes the performance of our bat-
tery prediction algorithm against the devices’ own
battery lifetime predictors (obtained via ACPI),
across experiments using all 7 combinations of appli-
cations. Our algorithm clearly wins, with average
errors of 1%, 3% and 6% while ACPI’s estimates
are (on average) over 100% off (i.e. predicting more

than double the actual lifetime) in the case of an
older battery with a non-linear discharge curve. In
absolute terms, we are able to predict battery life-
time with an average accuracy between 4 minutes
for the new laptop and 12 minutes for the iPAQ.
This experiment shows that our battery prediction
algorithm is capable of providing accurate enough
information to support the feasibility of CABMAN.

5 Related Work

Prior research on dealing with the limited bat-
tery lifetime problem has concentrated on optimiz-
ing energy at different levels of the stack, starting
with hardware all the way up to the application
layer [5, 3], including compiler-based energy opti-
mizations [6]. There has been limited research on
managing battery and treating energy as a first-
class operating system resource. To the best of
our knowledge, ECOSystem [13] is the only piece
of work that takes this approach. Banerjee et al [4]
show through user studies that a considerable por-
tion of battery recharges are driven by context but
do not solve the problem of associating context
with recharges. On mobile devices, the interfaces
that inform the user of the battery levels (such as
ACPI [2]) have not kept up with the evolution of the
capabilities of these devices for context-sensing, and
the always-on multi-functional roles they promise to
play in the near future.

There is some literature on predicting location of
the user based on mobility traces [8, 7]. It is worth
noting, however, that predicting the location of the
user is not always the end goal. In our case, location
traces are utilized to predict when the next charg-
ing opportunity will be available, and hence the al-
gorithm had to be tailored to make this prediction
accurately. We are not aware of any research on
processing user call logs to predict future calltime
requirements.

Our battery-lifetime prediction algorithm out-
performs existing algorithms such as ACPI’s [2].
Prior research on predicting battery lifetime has fo-
cused on the use of analytical methods in study-
ing battery characteristics and deriving models for
battery-lifetime prediction offline [10, 11]. There
has also been some research on making online pre-
dictions based on the execution history of appli-
cations [5] under dynamically changing workloads.
The idea of profiling the battery in idle mode of-
fline to make predictions online has also been pro-

232

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

posed [12]. Our approach is simpler, more accurate
and uses the idea of a discharge speedup factor to
predict the remaining battery lifetime for constant
workloads online and in an application independent
manner.

6 Discussion

Charging-opportunity predictor and call-time
predictor perform reasonably well for an average
user whose life entropy is not very high. For users
with a very high entropy lifestyle, the prediction al-
gorithms described in this paper may not work very
well. Additional context information will be needed
to improve the accuracy of these prediction algo-
rithms for such users. This may include calendar
information, information about the travel plans of
the user, charge-logs, etc.

Many users charge their phones in their cars
while driving. For such users, it is not always
possible to associate charging with location. The
charging-opportunity predictor should then asso-
ciate charging with the user’s presence in the car,
and should predict when the user will be in the car
next. This would also require additional context
information to be logged.

7 Conclusions

Battery management using only the current bat-
tery level as an indicator of scarcity is both too con-
servative in some situations and too optimistic in
others. We describe three key components of CAB-
MAN: (1). the use of context information such as
location to predict the next charging opportunity,
(2). more accurate battery life prediction based on
a discharge speedup factor and (3). the notion of
crucial applications such as telephony. For each of
these components, we propose a new prediction al-
gorithm, and evaluate these algorithms using traces
of real users and against experiments on real de-
vices. Our test results are very positive, with charg-
ing opportunity prediction exhibiting an average er-
ror of 12 minutes, battery life prediction having av-
erage errors of between 4 and 12 minutes depend-
ing on the device used (significantly outperforming
the standard prediction algorithms on the devices
tested). For call time prediction, we show that users
call patterns are typically quite sparse, so our pre-
diction algorithm has average errors measured in
seconds, though in actual deployment a “minimum

call time remaining” setting by the user is likely to
be useful. We are in the process of carrying out a
user study with Nokia phones. The user study will
quantify the value of CABMAN to users, which is
the ultimate measure of the success of the system.

References

[1] Reality Mining, http://reality.media.mit.edu/.
[2] Advanced Configuration and Power Interface

(ACPI), http://www.acpi.info/.
[3] R. Balan, J. Flinn, M. Satyanarayanan, S. Sin-

namohideen, and H.-I. Yang. The case for cyber
foraging. In Proceedings of the 10th workshop on
ACM SIGOPS European workshop, 2002.

[4] N. Banerjee, M. Corner, A. Rahmati, S. Rollins,
and L. Zhong. Users and batteries: Interactions and
adaptive energy management in mobile systems. In
Proceedings of the 9th International Conference on
Ubiquitous Computing (Ubicomp), 2007.

[5] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In SOSP ’99:
Proceedings of the seventeenth ACM symposium on
Operating systems principles, 1999.

[6] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and
R. Bianchini. Code transformations for energy-
efficient device management. In IEEE Transactions
on Computers, 2004.

[7] J. Krumm and E. Horvitz. Predestination: Infer-
ring destinations from partial trajectories. In Pro-
ceedings of Ubicomp, 2006.

[8] K. Laasonen and M. R. et al. Adaptive on-device
location recognition. In Proceedings of Pervasive,
2004.

[9] A. LaMarca and Y. C. et al. Place lab: Device po-
sitioning using radio beacons in the wild. In Pro-
ceedings of Pervasive, 2005.

[10] D. Panigrahi, S. Dey, R. Rao, K. Lahiri, C. Chi-
asserini, and A. Raghunathan. Battery life estima-
tion of mobile embedded systems. In Proceedings
of the The 14th International Conference on VLSI
Design (VLSID ’01), 2001.

[11] P. Rong and M. Pedram. Remaining battery ca-
pacity prediction for lithium-ion batteries. In Con-
ference of Design Automation and Test, 2003.

[12] Y. Wan, R. Wolski, and C. Krintz. Online predic-
tion of battery lifetime for embedded and mobile
devices. In Proceedings of PACS, 2003.

[13] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: managing energy as a first class operat-
ing system resource. In ASPLOS-X: Proceedings of
the 10th international conference on Architectural
support for programming languages and operating
systems, 2002.

233

Authorized licensed use limited to: MIT Libraries. Downloaded on January 19, 2009 at 01:41 from IEEE Xplore. Restrictions apply.

