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Abstract In this paper, we describe the Mobile-IT Education (MIT.EDU) system, which demonstrates

the potential of using a distributed mobile device architecture for rapid prototyping of

wireless mobile multi-user applications for use in classroom settings. MIT.EDU is a stable,

accessible system that combines inexpensive, commodity hardware, a flexible sensor/

peripheral interconnection bus, and a powerful, light-weight distributed sensing, classifica-

tion, and inter-process communications software architecture to facilitate the development of

distributed real-time multi-modal and context-aware applications. We demonstrate the

power and functionality of this platform by describing a number of MIT.EDU application

deployments in educational settings. Initial evaluations of these experiments demonstrate the

potential of using the system for real-world interactive m-learning applications.

Keywords commodity hardware, context-aware, distributed, m-learning, multi-modal, real-time, sen-

sing, system architecture, wearable computing

Introduction

Educators and technologists alike are keenly interested

in how wireless and mobile technology can enhance

the way people learn and interact with each other. It is

obvious that these m-learning technologies (e-learning

using mobile devices and wireless transmission) can

potentially provide important opportunities for learn-

ing and collaborative interaction. Reality, however,

has often failed to live up to these high expectations,

and wide technology adoption in classrooms has his-

torically been very slow. Typically, technology is

showcased as demonstration systems in various ex-

perimental E-classroom initiatives such as in Davis

(2003), but then penetration in general settings is

painfully low. In addition, many m-learning technol-

ogies are often limited to content delivery onto mobile

devices, missing the rich potential for more interactive

learning paradigms.

One cause of limited adoption is that practical is-

sues such as usability, flexibility, and extensibility are

often overshadowed by the need to quickly demon-

strate the new features of the technology. The devel-

opment of the foundation infrastructure necessary to

make the technologies most effective is therefore our

goal, in order to allow easy deployment of highly in-

teractive and personalized educational technologies.

Several key components are necessary to create

such a technology infrastructure for educational set-

tings. First and foremost, a flexible and scaleable

system architecture platform is required to be able to

appropriately handle classroom settings, potentially

involving up to hundreds of individual users. Second,

the human factors side of the equation must be prop-

erly balanced, and the interface must be appropriately

tailored to the application.

Mobile-IT Education (MIT.EDU) applications at-

tempt to achieve these goals by building on a wearable

computer technology developed by the MIT Wearable
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Computing group called MIThril, named for the pro-

tective mithril vests appearing in the Lord of the Rings

trilogy. This wearable computing technology supports

the rapid prototyping and rollout of large-scale com-

munity-based applications, originally with particular

application to the support of military and emergency

operations. The MIThril project started as an attempt

to remedy the substantial human factors, flexibility,

and robustness problems plaguing wearable computing

research at the end of the 1990s. From these begin-

nings, MIThril evolved towards a practical, modular

system of hardware and software for research in

wearable sensing and context-aware interaction

(Brown 1997; Pascoe 1998; Starner 1998).

In 2001, the defining feature of MIThril was the

modular, distributed, clothing-integrated design based

on a unified power/data bus, allowing us to put sen-

sing, computing, and interaction resources where they

were most useful and appropriate (Lukowicz 2001). In

2003, the advent of inexpensive wireless-capable Li-

nux-personal data assistant devices (PDA) hardware

allowed us to redefine MIThril as a multi-user wireless

distributed wearable computing environment, sup-

porting dozens of interacting users and large-scale

interaction and sensing experiments (DeVaul et al.

2003; http://www.media.mit.edu/wearables). It is this

maturation of commercial technology that is paving

the road to viable m-learning paradigms.

Although PDAs are typically used for individual-

user mobile applications, there exists a greater op-

portunity to tie these PDAs together with a uniform

data communication and resource discovery infra-

structure that can result in much richer forms of in-

teraction and educational dynamics. The advent of

inexpensive wirelessly enabled PDA hardware pro-

vides the perfect base platform for multi-user, wire-

less, distributed wearable computing environment,

supporting dozens of interacting users and large-scale

interaction and sensing experiments.

We demonstrate the ability to use this standardized

PDA hardware tied together with a flexible software

architecture and modularized sensing infrastructure to

create a system platform where complicated dis-

tributed multi-user applications can be developed to

enhance educational settings. While our current sys-

tem implementations are based on PDAs, the software

infrastructure is made to be portable to a variety of

mobile devices, including cell phones, tablet PCs, and

other convergence devices. As such, our systems

leverage commercial off-the-shelf components with

standardized base-layer communication protocols,

such as transmission control protocol/Internet proto-

col; this allows for the rapid adoption and deployment

of our systems into mainstream educational settings.

Even though the variety of applications available

for modern mobile devices is quite compelling, they

are typically standalone programs with little flexibility

or extensibility. We found critical problems in dis-

tributed inter-process communication, signal proces-

sing, and sensor data classification that were neither

addressed by operating systems nor currently available

software tools.

The MIThril software architecture addresses these

problems by trying to combine the best features

and practices from a range of research systems and

methodologies, doing so in an open, modular, and

flexible way. The three important software systems

that form the foundation of the MIThril software ar-

chitecture are: The Enchantment Whiteboard System

for inter-process communication, the Enchantment

Signal System for high-bandwidth data streaming, and

the Real-Time Context Engine infrastructure for in-

ference and statistical machine learning. This software

infrastructure ties everything together, allowing net-

work-transparent streaming data communication to

arbitrary endpoints capable of real-time, context-

aware interaction. These tools address critical needs in

the development of mobile applications while impos-

ing minimal constraints on the nature of these appli-

cations.

Using the MIThril software, we are able to extract

trends and patterns of activity from the environment as

well as the individual user. In order to effectively

observe contextual data, systems must have a means to

gather, process, and interpret this real-time contextual

data. To facilitate this, the MIThril architecture in-

cludes modular sensor hubs that can be used to in-

strument devices for contextual data gathering.

MIT.EDU applications are layered upon this base

capability, providing a way to gather these hetero-

geneous streams of information, perform real-time

processing and data mining on this information, and

return classification results and statistics that can be

used for educational applications. This important

contextual data can then be used to derive meaningful

information such as immediate user context/profiles,
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user interaction patterns, aggregated user statistics,

and even social network topology or organizational

structure. This information can result in more effec-

tive, context-aware applications that can augment

classroom dynamics in educational settings.

MIThril technical overview

MIT.EDU applications use the MIThril architecture to

provide distributed applications in classroom and

collaborative settings. Here, we provide a basic de-

scription of the hardware and software architecture;

please refer to DeVaul et al. (2003) for a more detailed

technical description.

Hardware

The MIThril hardware architecture is a highly flexible,

modular system that is tied together by wired/wireless

networking protocols and a unified multi-wired protocol

power/data bus for sensors and peripherals. An example

of the MIThril configuration is laid out in Fig. 1.

MIThril currently employs the Sharp Zaurus SL-

5500 PDA for applications requiring real-time data

analysis, peer-to-peer wireless networking, full-duplex

audio, and graphical interaction.

The MIThril system supports wireless networking

through the Zaurus compact flash interface. This low-

cost wireless networking capability is a crucial en-

abling feature, allowing us to implement multi-node,

distributed wearable applications. In general, the

compact flash card slot allows for a rich variety of

peripherals/sensors, including cell-phone modems,

global positioning system (GPS), image and video

cameras, Bluetooth and 802.11b (WiFi) wireless, and

even head-mounted displays. The Zaurus also pro-

vides a serial port, which we use to interface with the

Swiss Army Knife version 2 board (SAK2) sensor hub

to communicate with sensors.

The SAK2 sensor hub is responsible as a bridge to

the sensor data, providing sensor data acquisition,

buffering, and sequencing. The SAK2 can also be used

without the Zaurus as a standalone data acquisition

system. This is particularly useful for large-group

applications that do not require real-time processing,

WiFi wireless, or complex user interaction.

In addition to the PDA and SAK2 components

MIThril leverages a wide variety of sensors, including

accelerometers (for motion detection), environmental

switches, light sensors, IR tag readers (which can be

used to read tags that identify locations, objects, or

even individuals), battery monitors, GPS units, audio

microphones, and physiological sensing including

electrocardiography/electromyography, galvanic skin

response (GSR), temperature, heat flux, pulse oxi-

meters, blood pressure, and heart-rate monitors.

Software

The MIThril software architecture allows designers to

quickly prototype distributed, group-based applica-

tions that use contextual information about the mem-

bers of a group. The software comprises three important

parts: the Enchantment Whiteboard, the Enchantment

Signal System, and the MIThril Real-Time Context

Engine.

The Enchantment Whiteboard System is a dis-

tributed, client/server, inter-process communication

system that provides a lightweight way for applica-

tions to communicate.

For higher bandwidth signals, especially those re-

lated to the sharing and processing of sensor data for

context-aware applications, we developed the En-

chantment Signal System. The Signal system is in-

tended to facilitate the efficient distribution and

Fig. 1 MIThril system, composed of the Zaurus personal data

assistant (top left), with Swiss Army Knife version 2 board data

acquisition/sensor hub and BioSense physiological sensing

board with electrokymograph/heart rate, skin conductance,

temperature, respiration (middle), battery source (top right),

sensor bus hub (lower right), motion-sensing board (middle

left), and multi-sensor board with infrared tag reader, audio,

motion (lower left).
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processing of digital signals in a network-transparent

manner.

The MIThril Real-Time Context Engine is an open-

source, lightweight, and modular architecture for the

development and implementation of real-time context

classifiers for wearable applications. Using the context

engine, we can implement lightweight machine

learning algorithms (capable of running on an em-

bedded system like the Zaurus) to process streaming

sensor data, allowing the MIThril systems to classify

and identify various user-state contexts in real-time.

MIT.EDU applications

The MIT Wearables Group has about 40 MIThril

systems in active use, including group-based applica-

tions within several collaborative class settings in-

volving 30 simultaneous users. The authors developed

Digital Anthropology, an annual cross-registered

course between the Massachusetts Institute of Tech-

nology (MIT) Media Laboratory and the MIT Sloan

Business School, was specifically created in the

Spring, 2003, and continued in the Spring, 2004, as a

technology testbed for investigating deployments of

MIT.EDU applications for collaborative learning and

teaching feedback. The syllabus is available through

OpenCourseWare, at http://ocw2.mit.edu/OcwWeb/

Media-Arts-and-Sciences/MAS-966Spring2003/

CourseHome/index.htm.

In the following section, a number of real-world

case examples of multi-user MIT.EDU applications

that are built upon various parts of the MIThril plat-

form are detailed. We first start with a description and

evaluation of OpinionMetrics, a distributed applica-

tion that demonstrates the power of real-time student

and teacher feedback. This is followed by brief de-

scriptions of our Reality-Mining, Socio-Physio-

Metrics, and GroupMedia projects, examples that

were chosen to showcase a few novel applications

with unique real-time interaction, analysis, and feed-

back possibilities that illuminate the potential of m-

learning technologies. These examples demonstrate

the modular, configurable nature of the MIThril

hardware and the flexibility of the software archi-

tecture to accommodate a variety of high bandwidth,

real-time applications.

OpinionMetrics and real-time rating

In an MIT classroom, students attend an introductory

Finance lecture. In front of each student, a WiFi-

equipped Sharp Zaurus displays a simple, functional

interface with buttons labelled ‘Applause’, ‘Bored’,

and ‘Lost’. During the lecture, the students use this

interface to provide instant feedback on their status

in class. The lecturer is also equipped with a Zaurus

that allows her to monitor this feedback in real time.

When the number of ‘Lost’ students reaches a pre-

defined threshold, the lecturer’s Zaurus flashes

red as a warning that the material is not being ab-

sorbed.

To clarify the class’ level of understanding, the

lecturer asks a question. Her Zaurus-equipped teach-

ing assistant polls the class with the push of a button.

When he starts the poll, the students’ interface raises a

poll dialogue box. When the poll ends, the results are

displayed on everyone’s Zaurus, and the lecturer has a

better idea of the class’ understanding. This in-

formation is logged for later analysis, allowing the

lecturer to craft better presentations.

OpinionMetrics is a set of applications designed to

provide lecturers and teaching assistants with feed-

back about how students are tracking material pre-

sented in class. The system has been tested in multiple

classroom situations, with positive feedback from

users.

We have successfully deployed OpinionMetrics in

several trial runs in actual classroom settings at MIT.

One particular system rollout was during a neuro-

biology class with over 20 students, where each stu-

dent’s OpinionMetrics data as well as the class’ audio

were recorded. The OpinionMetrics systems scaled

very well under the resource limitations of the avail-

able wireless infrastructure. Despite the fact that every

student already had a WiFi-enabled tablet PC, there

were no problems running so many simultaneous

systems streaming OpinionMetrics data.

We can make several interesting observations from

the data collected. From the individual data, we can

determine which students felt lost or interested, and

the times when they felt compelled to indicate their

class state. These timestamps can be synchronized to

points in the recorded audio stream to identify the

topics that the students struggled with or found inter-

esting. This information allows a teacher to tailor the
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educational content and resources to better fit the

needs of particular students.

From the aggregate data, we can see spikes of in-

terest and confusion during specific points in the lec-

ture. This real-time information is potentially very

useful to determine the average state of the class. The

OpinionMetrics software was set to notify the lecturer

once a critical simultaneous ‘lost’ threshold was

reached. In the class, the lecturer actually responded to

these warnings by issuing in-class polling questions,

which were sent directly to the student systems. The

lecturer can use the results of these polls to further

identify the class state and potentially change his

lecture material dynamically.

A student survey (18 students) of the usability of the

OpinionMetrics systems was conducted. The survey

showed that the students generally responded very

favourably to the anonymous feedback interaction that

OpinionMetrics offered. They felt that they had a

significantly better way to express their understanding

of the material and found that the interaction level

between the students and professor was raised. In

general, they did not feel that having the Opinion-

Metrics system in front of them created a major dis-

traction and did not find it uncomfortable to hold or

use. On average, students wanted to use the system in

other classes as well. The lecturer of the class was also

very interested in the potential of the MIT.EDU sys-

tems. One suggestion that was made was to add alter-

native output modalities such as audible or tactile cues

(instead of strict visual graphs) in order to more natu-

rally gauge class state without distraction. The sum-

mary of the survey responses is presented in Table 1.

There are other projects that have goals similar to

OpinionMetrics that allow students to give feedback

and allow a lecturer to take polls (Dufresne et al. 1996;

Boyle et al. 2002; Draper & Brown 2004). While some

of these systems are relatively low-cost and allow for

large-scale implementations, OpinionMetrics has an

advantage because of its customizability and ability to

run on devices that students may already own such as

laptops and PDAs.

We have received positive feedback from the Opi-

nionMetrics project, and there is clearly a use for such

a system in lecture halls where individual expression

can be hindered by large numbers of people competing

for attention and the fear of exposing one’s lack of

understanding to peers.

Reality mining and conversation analysis

Throughout the semester, every student in the Digital

Anthropology course was outfitted with a MIThril

system, which recorded continuous high-quality

streaming audio using the Enchantment infrastructure

to a remote server. Profiles of a participant’s con-

versation such as speaking rate, energy, duration,

participants, interruptions, transition probabilities,

and time spent holding the floor were calculated using

conversation detection and analysis algorithms. This

information gives valuable insight into the context and

content of conversation as well as captures the dy-

namics of how such conversations are structured.

Another interesting area of exploration is deploying

MIT.EDU systems in group settings to capture con-

versations and develop statistics on the dynamics of

group interaction. Classroom dynamics play a crucial

role in the success of a class. It is common knowledge

that an instructor must have a sense of how many

people are following the lecture, who could use more

personalized help, and which parts of lecture need to

be reviewed. In an effort to substantially augment an

instructor’s intuition, our system can quantify these

types of metrics to a much greater level of precision.

Each standard MIT.EDU system was augmented

with an application to record audio continuously,

storing it locally until it could be transmitted to a

server over an available wireless network. Participants

continuously provide subjective interest feedback on

Table 1. Summary of survey results given to an 18-person class

after using OpinionMetrics (out of a 7-point Likert scale, ranging

from strongly disagree to strongly agree). The chart shows the

average rating of each question, followed by the standard de-

viations

Question M SD

It was easy to hold the device 5.5 1.4

It was a distraction during lecture 3.8 1.6

The ability to give anonymous feedback was

helpful

6.1 1.2

The system increased the ability to express

feelings about lecture at any given moment

5.9 1.0

The system increased student-teacher interaction 5.3 1.4

The system made class time more effective 4.3 1.5

The system improved learning of material in class 3.9 1.8

The system would be useful to have in other class

settings

5.7 1.3
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comments and discussion using a modified Opinion-

Metrics application that converts the task of providing

continuous feedback into a low-attention, secondary

task.

By correlating peaks in interest/approval with the

individual audio inputs, the system can automatically

provide a summary audio track consisting of com-

ments that had high approval or interest ratings, and

employ speech analysis to identify topics that had high

(or low) ratings. Dynamic maps of student interaction

can be generated and publicly displayed to reflect the

roles and dyadic relationships within a class. This

analysis can help develop deeper insight into the un-

derlying dynamics of the class.

Once detected, the conversation audio streams are

extracted and analysed. Table 2 shows a selection of

features that can be gleaned from this audio data.

Profiles of a student’s typical classroom behaviour are

built over time using conversation features such as

speaking rate, energy, duration, participants, inter-

ruptions, transition probabilities (the probability that a

particular speaker would speak following a given

speaker), and time spent holding the floor. By com-

paring relative volume levels of a student’s voice in

multiple microphones, it even becomes possible to

infer physical proximity to an approximate degree

(Eagle & Pentland 2003).

This system uncovers information concerning the

effectiveness of the class, as well as the dyadic re-

lationships between individuals. The information col-

lected includes a list of the peers that a student

typically sits by, avoids, talks to, interrupts, and

transitions. As can be seen from Fig. 2, a professor (s9)

is obviously the dominant member while his advisees

(s2, s7, s8) concede the floor to him with relatively

high probability – indicative of his influence.

Subjective feedback is pooled and shared with the

participants via a public display. Comments that give

rise to wide variations in opinion cause the discussion

to focus on the reason for disparate opinions, and

controversial topics can be retrieved for further ana-

lysis and debate. Opinions and comments can also be

clustered using ‘collaborative filtering’ to display

groupings of opinion, allowing within- and between-

group debate. This project demonstrates our ability to

capture extremely rich data on everyday behaviour

within the classroom.

We have also deployed our systems in MIT Sloan

Business School’s negotiation classes in the Fall,

2003, where it is useful to be able to monitor in-

dividual and group reactions to structured interactions

to analyse conversational dynamics using our techni-

ques as well.

We hope to use the information obtained from these

controlled experiments to measure the extent to which

it can be leveraged to create a more effective and in-

formative classroom experience.

Socio-PhysioMetrics and psychophysiology

The Digital Anthropology seminar is hosting a special

guest speaker. The speaker and audience members are

wearing physiological monitoring systems that mea-

sure skin temperature, heart rate, and skin con-

ductance measures. Behind the speaker, a projector

displays these aggregated physiological signals in real-

time, allowing the audience and speaker to gauge the

Table 2. Metrics for classroom interaction analysis

Speaker number Floor time

(%)

Average comment

(sec)

Nearest Neighbour Transition name

(%)

Average interest Group interest

s1 1.5 4.1 s8 s8 (27) 0.21 0.44

s2 2.2 2.2 s9 s9 (47) 0.13 0.36

s3 9.9 3.5 s9 s4 (22) 0.20 0.22

s4 11.4 9.6 s7 s6 (23) 0.05 0.30

s5 12.8 8.8 s7 s9(37) 0.18 0.33

s6 16.9 6.6 s4 s7(28) 0.09 0.21

s7 10.1 6.6 s4 s9 (30) 0.19 0.24

s8 10.8 10.9 s1 s9 (26) 0.40 0.32

s9 24.4 6.9 s7 s6 (22) 0.17 0.25
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effects of the speech on the audience as well as pro-

viding biofeedback to the speaker.

The guest speaker and the members of the audience

are also wearing headset microphones and WiFi-en-

abled Zaurus that stream the individual audio signals

to a central server for logging, playback and later

analysis. The separate audio signals for each speaker

make analysing the structure of conversations easy.

Some members of the audience are wearing an ex-

perimental motion-based head nodding/shaking mea-

surement system, which can classify whether a person

is subconsciously in agreement/disagreement in real

time. These data are also being displayed on the

projector and recorded for later interpretation.

For our Digital Anthropology classes, the speaker

and audience members were outfitted with MIT.EDU

systems that can measure skin temperature, heart rate,

and skin conductance. The MIT.EDU applications

used these measurements, plus an accelerometer-

based real-time head nodding/shaking classification

systems developed using the MIThril Context Engine

framework. These systems allowed us to stream phy-

siologic/movement data in conjunction with the opi-

nion data from the OpinionMetrics software. The data

can be used to gauge interest and agreement levels in

real-time, and to cross-compare self-reporting results

to baseline information such as unconscious nodding

in agreement and psycho-physiologic cues such as

heart rate and GSR, which is highly correlated with

stress and sympathetic nervous system arousal (Ca-

cioppo & Tassinary 1990).

The real-time visualization of the aggregated En-

chantment Signal information serves a dual-roll for the

speakers and the teacher. The audience’s aggregated

psychophysiology statistics can be used to gauge au-

dience attention and interest in the form of socio-

biofeedback. The speaker can also be wired with his

own physiological signals, which is useful as bio-

feedback for the speaker to identify his own mental

state, or by the teacher, who can observe the effects of

the speaking or negotiation interaction. Within the

context of a structured interaction of a speaking or

negotiation class, the person’s performance can be

studied in a very controlled environment, giving the

individuals as well as the instructor valuable feedback.

These socio-physiometric displays have the power

to radically change the dynamics and interaction of

students and teachers, as well as to provide additional

dimensions of information dissemination. Similar dis-

plays that show real-time group contextual information

such as speaking time of participants in a meeting have

been shown to have positive impacts on the dynamics

of group interaction (DiMicco & Bender 2004).

GroupMedia and social influence/interest

Group deliberations and decision-making are an in-

tegral aspect of Sloan Business School. Four business

school students are keenly involved in an animated

discussion to find a class project they have to execute

as a team. Individuals are using Rateit! on their

Zaurus PDAs to give an objective rating of how in-

teresting they find the ideas. This can be correlated

with their head-movement and nodding, speech fea-

tures and physiology, to understand the socio-physio-

metrics of brainstorming and idea generation.

The concepts of conversational analysis and socio-

physiometrics can be combined to analyse the inter-

action of groups, which we call GroupMedia. The

GroupMedia system has been used to measure con-

versational interest in ten sessions of our Digital An-

thropology class. Each session involved a group of

three or four people, for durations of between

Fig. 2 A visual depiction of the professor (s9) and student

dynamics. Speaking time is depicted by circle size, transition

probability is depicted by the width of a link, and average in-

terest level is depicted by circle shade (individual) and circle

border (group).
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10 minutes and one hour. The students engaged in

conversation and brainstorming sessions, while we

recorded their audio dynamics, head movement, and

subjective interest ratings.

Head movement and an individual’s speech features

were easily obtained through motion sensors and mi-

crophones that plugged into our MIT.EDU systems.

Subjective interest rating was obtained through an

interactive MIT.EDU application called Rateit! This

application is a variant of the OpinionMetrics soft-

ware, but with a particularly designed graphical user

interface so that the users can change interest ratings

without significant cognitive load and without having

to look at the PDA touch-screen to use it.

We can analyse the voice streams of the individuals

of the group session to determine the ‘influence’ that

individuals have on each other. This influence para-

meter expresses how strong the overall state for a

person is depending on the state of another person. In

this case, we use a simple two-state model of speaking

vs. not-speaking dynamics of the recorded audio to

model individual dynamics, and then measure the in-

fluence parameter to determine the coupling between

speakers. In Choudhury and Pentland (2003), this

measure of influence was shown to have an extremely

high correlation with one measure of the social no-

velty (and thus presumably the interestingness) of the

information being presented.

From the derived influence parameters and the ob-

jective interest ratings, we can begin to see these

trends relating social influence and individual interest.

Figure 3 shows a graph of the typical data from these

meetings. The graphs show group interest ratings

during an 8-min session, and the corresponding in-

fluence parameters calculated from the audio features.

A long-term rise in interest is observed, along with a

corresponding long-term rise in influence parameters;

the influence parameters are a statistically significant

predictor of user interest ratings with a correlation of

r 5 0.5. More importantly, the ‘bumps’ in the interest

rating correspond to ‘bumps’ in the influence para-

meters. This supports the idea that individuals begin to

influence each other more (i.e. were more ‘engaged’)

as they find a conversation more interesting.

There was also a correlation between the overall

head movement in the group and objective interest.

Bursts of group head nodding correctly identify 80%

of the changes in group interest level, with a 1/3 false

alarm rate. Head nodding is not a perfect indicator of

interest change, nor does it give the sign of the change,

but it does provide the very useful information that we

should look for changes in participant behaviour and

interest.

Conclusions

The MIT.EDU applications we have described de-

monstrate the potential of a flexible system infra-

structure capable of a variety of individual and

group-based context-aware applications. As the var-

ious applications that have already been developed

demonstrate, the MIThril hardware and software in-

frastructure allow for the rapid implementation of

complex, distributed applications that are context-

aware and can interact with students/teachers in real-

time. The fact that the infrastructure allows the rapid

prototyping of new MIT.EDU applications with

minimal effort means that we can conceive and iterate

on new applications very easily, further simplifying

the design process.

The responses we have had to the MIT.EDU ap-

plications provide evidence that we can create sig-

nificant positive changes in the educational dynamics

of our classrooms. Of special interest are the real-time

quantitative statistics that can be gathered with our

infrastructure that can help teachers to more effec-

tively guide and direct their teaching interactions with

students. These statistics can reveal important trends in

classroom behaviour, and result in more efficient dy-

namics where more effective learning can take place.

Fig. 3 Plot of participant interest ratings and the correspond-

ing influence parameters.
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Notes

It is our hope that other people will find our infra-

structure and software tools useful. These tools are

open-source and available at http://www.media.mi-

t.edu/wearables under the terms of the Gnu Public

License, along with our hardware design files for the

SAK2 sensor hub and other sensor designs.

Acknowledgements

We would like to recognize the Media Laboratory

wearable community as well as the students in the

Digital Anthropology class for their contributions to

the MIT.EDU applications. We would also like to

thank the MIT Sloan Business School for providing

the opportunity to evaluate our applications during

live classroom settings.

References

Boyle J., Nicol D., Hamilton B. & Dempster B. (2002)

Experience with classroom feedback systems to enable

Socratic dialogue in large engineering classes, en-

gineering education. Engineering Education, Profes-

sional Engineering Scenarios, IEE 1, 16/1–16/4.

Brown P.J., Bovey J.D. & Chen X. (1997) Context-aware

applications: from the laboratory to the marketplace.

IEEE Personal Communications 4, 58–64.

Cacioppo J.T. & Tassinary L.G. (1990) Principles of

Psychophysiology: Physical, Social, and Inferential

Elements. Cambridge University Press, Cambridge, UK.

Choudhury T. (2003) Sensing and modeling of human net-

works. PhD Thesis, Department of Media Arts and Sci-

ences, MIT.

Davis S.M. (2003) Observations in classrooms using a net-

work of handheld devices. Journal of Computer Assisted

Learning 19, 298–307.

DeVaul R.W., Sung M., Gips J. & Pentland A. (2003)

MIThril 2003: applications and architecture. Proceed-

ings of the Seventh IEEE International Symposium

of Wearable Computers, White Plains, NY, USA

pp. 4–11

DiMicco J.M. & Bender W. (2004) Second messenger: in-

creasing the visibility of minority viewpoints with a face-

to-face collaboration tool. Proceedings of the Ninth ACM

International Conference on Intelligent User Interfaces,

Madera, Portugal pp. 232–234

Draper S.W. & Brown M.I. (2004) Increasing interactivity in

lectures using an electronic voting system. Journal of

Computer Assisted Learning 20, 81–94.

Dufresne R., Gerace W., Leonard W.J., Mestre J.P. & Wenk

L. (1996) Classtalk: a classroom communications system

for active learning. Journal of Computing in Higher

Education 7, 3–47.

Eagle N. & Pentland A. (2003) Social network computing.

Proceedings of the Fifth ACM International Conference

on Ubiquitous Computing. Seattle, WA, USA

(TechNote)

Lukowicz P., Anliker U., Troster G., Schwartz S.J. & De-

Vaul R.W. (2001) The weararm modular, low power

computing core. IEEE Micro 21, 16–28.

Pascoe J. (1998) Adding generic contextual capabilities to

wearable computers. Proceedings of the Second IEEE

International Symposium on Wearable Computers,

Pittsburgh, PA, USA pp. 92–99.

Starner T., Schiele B. & Pentland A. (1998) Visual context

awareness in wearable computing. Proceedings of the

Second IEEE International Symposium on Wearable

Computers, pp. 50–57.

M-learning applications for classroom settings 237

& Blackwell Publishing Ltd 2005 Journal of Computer Assisted Learning 21, pp229–237


