
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 1678–1698
Energy efficient strategies for object tracking in sensor networks:
A data mining approach q

Vincent S. Tseng *, Kawuu W. Lin

Institute of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC

Received 8 March 2006; received in revised form 23 October 2006; accepted 14 December 2006
Available online 13 January 2007
Abstract

In recent years, a number of studies have been done on object tracking sensor networks (OTSNs) due to the wide applications. One
important research issue in OTSNs is the energy saving strategy in considering the limited power of sensor nodes. The past studies on
energy saving in OTSNs considered the object’s movement behavior as randomness. In some real applications, however, the object move-
ment behavior is often based on certain underlying events instead of randomness completely. In this paper, we propose a novel data
mining algorithm named TMP-Mine with a special data structure named TMP-Tree for efficiently discovering the temporal movement

patterns of objects in sensor networks. To our best knowledge, this is the first work on mining the movement patterns associated with
time intervals in OTSNs. Moreover, we propose novel location prediction strategies that utilize the discovered temporal movement pat-
terns so as to reduce the prediction errors for energy savings. Through empirical evaluation on various simulation conditions and real
dataset, TMP-Mine and the proposed prediction strategies are shown to deliver excellent performance in terms of scalability, accuracy
and energy efficiency.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Location prediction; Temporal movement patterns; Object tracking; Sensor networks; Data mining
1. Introduction

Energy efficient tracking of objects in sensor networks is
an emerging research field attracting a lot of attention
recently. Advances in wireless communication and micro-
electronic device technologies have enabled the develop-
ment of low-power micro-sensors and the deployment of
large scale sensor networks. With the capabilities of perva-
sive surveillance, sensor networks are applied in a lot of
commercial and military applications, like the object track-
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.12.561

q This paper is an extended version of Tseng and Lin (2005), entitled
‘‘Mining Temporal Moving Patterns in Object Tracking Sensor
Networks’’, by V. S. Tseng and K. W. Lin, which appeared in Proceedings
of the International Workshop on Ubiquitous Data Management (held
with ICDE’05), April, 2005, Tokyo, Japan.

* Corresponding author. Tel.: +886 6 2757575x62536; fax: +886
62747076.

E-mail address: tsengsm@mail.ncku.edu.tw (V.S. Tseng).
ing application and the environmental data collection.
However, the intrinsic limitations such as power con-
straints, synchronization, deployment, and data routing
bring numerous research challenges (Akyildiz et al., 2002;
WINS project).

In a sensor network, the deployed sensor nodes form ad

hoc networks (Akyildiz et al., 2002; Hara et al., 2004) and
the nodes can communicate with each other by RF radios
without special infrastructure. Compared with the stan-
dard ad hoc networks, a sensor network has the following
characteristics: (1) the sensor nodes are static in terms of
physical location; (2) the computing power is normally
weak; (3) the energy carried in a sensor node is limited.
Due to the environmental conditions that replenishing
the battery charge is expensive or infeasible, the energy is
one of the most important system resources that should
be reserved (Carle and Simplot, 2004). In this paper, we
focus on the problem of energy saving in the object track-
ing sensor networks (OTSNs).

mailto:tsengsm@mail.ncku.edu.tw

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1679
In an OTSN, each sensor node is composed of sensing,
data processing, and communication components (Raghu-
nathan et al., 2002). Nevertheless, the power required by
different sensing components varies widely. For example,
using a velocity-based strategy to track the moving objects
requires the velocity sensing component, which is an energy
expensive device and is not the necessary equipment for
all sensor nodes. Hence, one of our research goals is to pro-
pose energy efficient strategies by using intelligent soft-
ware mechanism instead of adding the energy expensive
components.

A number of past studies tried to solve the energy saving
issue from the hardware design. For instance, the optimiza-
tion problem of the communication cost by inactivating the
RF radios of idle sensor nodes was widely discussed (Goel
and Imielinski, 2001; Heinzelman et al., 2000). However,
these studies did not consider the energy saving issues for
these components (Xu et al., 2004) although the sensing
and computing components consume relative less energy
than radios (Raghunathan et al., 2002). Several researchers
tried to save the energy through the software approach like
scheduling of sensors. One of the novel ideas is to put a
sensor node into sleeping mode when there are no objects
in its coverage/sensing region, and a sensor node is acti-
vated again whenever an object enters its sensing region.
Based on this idea, the studies for energy saving in OTSNs
can be further divided into two categories: non-prediction

based tracking and prediction based tracking. The intuitive
way of non-prediction based tracking method is periodi-
cally turn the sensor nodes off and only activate the sensor
nodes when it is time to monitor their sensing regions.
Another non-prediction based tracking method is planting
an agent onto the mobile device, named mobile agent. With
the help of mobile agents, the communication and sensing
overheads can be greatly reduced (Tseng et al., 2004). The
prediction based methods use the information of a moving
object like velocity or moving direction to predict the next
location the object might visit.

Note that both of the non-prediction based and predic-
tion based tracking methods neglected the event character-
istic of objects. In some real applications, the behavior of
the moving objects is often based on certain underlying
events instead of randomness completely. For example,
consider the bus tracking project in Mani (2003), the route
of each bus is pre-specified rather than being random. Cen-
tral to this issue is the problem of discovering the move-
ment behavior of objects. The wireless technologies
nowadays have allowed the collection of large amount of
movement logs (CRAWDAD; Reality Mining Project).
Therefore, it is feasible to discover the hidden knowledge
like movement behavior from the wireless log. Over the
past few years a considerable number of studies have been
done on using data mining techniques to discover this kind
of interesting patterns/rules from World Wide Web (Pei
et al., 2000), transactional databases (Agrawal and Srikant,
1995) and mobility databases (Huang et al., 2003; Kyriaka-
kos et al., 2003; Tseng and Lin, 2006; Tseng and Tsui,
2004). Note that the discovered patterns in such applica-
tions are implicitly assumed to be valid for some period
until the mobility patterns change with time. To keep the
patterns being updated, the data mining techniques may
be applied on the most updated log periodically. Most of
these past studies focused only on the aspect of path anal-
ysis and only few of them (Wu et al., 2001) considered the
temporal characteristic that is very critical in wireless net-
works. Without considering the temporal information,
the important knowledge may be overlooked (Roddick
and Spiliopoulou, 2002).

Take a vehicle tracking application as example. Assume
that each car is attached with a receiver that can receive the
beacon of the sensor node the car visits. By collecting the
log of cars, we may use the data mining method to discover
temporal movement rules. Suppose the following rules are
discovered: Rule1: (Station A! interval 10 min! Station
B! interval 5 min! Station C); Rule2: (Station A!
interval 20 min! Station B! interval 5 min! Station
D). By dispatching these rules to the corresponding sensor
nodes, the tracking can be mode in more energy efficient
way. For instance, if a car moves with the pattern as (Sta-
tion A! interval 10 min! Station B! interval 5 min)
that matches with Rule1, the node in Station B has only
to activate the node in Station C rather than that in Station
D or those around Station B. As can be seen, the temporal
clues can effectively enhance the prediction accuracy in an
OTSN. By integrating the temporal movement patterns

(TMPs) into the prediction strategies, the number of sensor
nodes that are incorrectly and unnecessarily activated is
expected to be substantially reduced and more energy can
be saved in an OTSN.

However, no studies have explored the issue of discover-
ing objects’ temporal movement patterns in OTSNs so as to
enhance the energy efficiency. In this paper, we propose a
novel data mining method named TMP-Mine with a special
data structure named TMP-Tree for efficiently discovering
TMPs in OTSNs. To our best knowledge, this is the first
work on mining the movement patterns with time intervals
in OTSNs. Moreover, we propose two prediction strategies
for predicting the location of a missing object in OTSNs by
utilizing TMPs. The first prediction strategy named PTMP

is capable of making prediction by employing TMPs with
no need to detect the object velocity. Hence, it can be
applied to the sensor networks with low-end sensor nodes.
The second strategy, namely PES + PTMP, is a hybrid
approach by integrating PTMP method with a popular
velocity-based strategy named PES (Xu et al., 2004). This
integrated strategy can further enhance the energy efficiency
if the sensor nodes carry the velocity detection capability.
Through empirical evaluation on various simulation condi-
tions and real dataset, TMP-Mine and the proposed predic-
tion strategies are shown to deliver excellent performance in
terms of scalability, accuracy and energy efficiency.

The rest of this paper is structured as follows. We briefly
review the related work in Section 2. In Section 3, we
describe the overall system architecture and workflow. In

1680 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
Section 4, we describe the problem definition and the pro-
posed data mining algorithm, namely TMP-Mine, is pre-
sented in Section 5. Section 6 gives the detailed
description on the prediction strategies. The empirical eval-
uation for performance study is made in Section 7. The
conclusions and future directions are given in Section 8.

2. Related work

In this section, we review the past studies on the three
subjects closely related to this research, namely energy effi-
cient strategies for object tracking, behavior mining and
behavior prediction.

For energy saving policies in sensor networks, a number
of past studies tried to solve this issue from the aspect of
hardware design. For instance, the optimization problem
of the communication cost by inactivating the RF radios
of idle sensor nodes was widely discussed (Goel and
Imielinski, 2001; Heinzelman et al., 2000). There are also
a lot of research efforts in energy efficient media access con-
trol (MAC) (Shih et al., 2001; Woo and Culler, 2001; Ye
et al., 2002). Several researches tried to save the energy
through the software design approach. In Cerpa et al.
(2001), the authors proposed the Frisbee scheme that keeps
only a limited zone of the network called a Frisbee that is
close to the moving object in the fully active state. How-
ever, it is difficult to choose a good radius of the Frisbee.
In Lin et al. (2006), the authors developed some tree struc-
tures for efficient object tracking by considering the physi-
cal network structure. In Xu et al. (2004), Xu et al.

proposed a network model, in which a sensor node is acti-
vated only if there exist some objects in its coverage region.
Besides, the activated node is scheduled to be active for X

seconds and in sleeping mode for (T � X) seconds during
the T seconds periodically to save the energy. They also
proposed a set of prediction based energy saving schemes
named PES to conserve the scarce energy resource by using
the latest detected or average velocity of a missing object to
predict its current location. To select the object velocity
and direction, three models named Heuristics INSTANT,
Heuristics AVERAGE, and Heuristics EXP_AVG were also
proposed. In the prediction phase, three mechanisms were
proposed, namely Heuristics DESTINATION, Heuristics

ROUTE, and Heuristics ALL_NBR. The Heuristics DES-
TINATION utilizes only the velocity information for acti-
vation while the Heuristics ROUTE activates all nodes on
the route. The Heuristics ALL_NBR mechanism activates
all neighboring nodes of the destination. However, the lat-
est detected velocity of objects may be incorrect since the
sensor node might lose the object in its periodical sleeping
mode. Hence, the PES method still incurs the problem of
incorrect prediction.

For the research on behavior mining, numerous studies
have been done on mining users’ behavior patterns like
association rules or sequential patterns in WWW (Pei
et al., 2000) and transactional databases (Agrawal and
Srikant, 1995; Heinzelman et al., 2000). In Pei et al.
(2000), the authors proposed a method named WAP-Mine
for fast discovery of the web access patterns from web logs
by using a tree-based data structure without candidate
generation. Previous studies on the mining of temporal
databases include (Agrawal and Srikant, 1995; Ale and
Rossi, 2000; Guil et al., 2004; Li et al., 2003; Padmanabhan
and Tuzhilin, 1996; Srikant and Agrawal, 1996). In Agra-
wal and Srikant (1995), the authors proposed a method
for mining the transactions to discover the time-ordered
patterns named sequential patterns. In Srikant and Agra-
wal (1996), the method using sliding window to restrict
the time gap between sets of transactions in mining
sequence patterns was proposed. The issue of using the
temporal logic and related operators such as since, until
and next was explored in Padmanabhan and Tuzhilin
(1996). In the category of mobility mining, most of the
existing researches focused only on the analysis of user
movement behavior Lee and Wang (2003), Yavas et al.
(2005). To discover the patterns from two-dimensional
mobility data, the problem of mining location associated
service patterns was first studied by Tseng and Tsui
(2004). A novel method for discovering users’ sequential
movement patterns associated with requested services in
mobile web systems was also proposed by Tseng and Lin
(2006).

In the area of behavior prediction, some researchers pro-
posed variations of Markov models, such as Dependency
Graph (DG) Padmanabhan and Mogul (1996), Predic-
tion-by-Partial-Match (PPM) Palpanas and Mendelzon
(1999) and N-gram model Su et al. (2000), for predicting
the user behavior in WWW. Basically, these methods
employ the last N page views of the user to predict the next
view by using the patterns discovered. Yang et al. (2004)
studied the association-rule based sequential classifiers
and considered features of association rules such as order,
adjacency, and recency systematically to construct predic-
tion models from web logs.

3. Problem statement

In this section, we first state the problem. Afterwards,
we describe the network environments and the behavior
issues of moving objects. The performance metrics are also
described in the end of this section.

In this work, we adopt a network model for OTSNs as
proposed in Xu et al. (2004), in which a sensor node is acti-
vated only if there is object in its coverage/sensing region.
Besides, the activated node is scheduled to be in active
mode for X seconds and in sleeping mode for (T � X) sec-
onds during the T seconds periodically to save the energy.
Moreover, we assume the movement log of objects is col-
lectable (Mani, 2003; Tseng and Lin, 2005) and the trajec-
tory of each object is represented in the form of
S = h(l1, t1)(l2, t2), . . . , (ln, tn)i, where li represents the sensor
node location at time ti. The log is considered as a valuable
resource since it contains the habitual patterns of objects.
The targeted problem is to two fold: (1) efficient discovery

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1681
of temporal movement patterns (TMPs) for objects, and (2)
location prediction by utilizing TMPs for energy saving.

To solve the problem described above, we shall discover
TMP in the form as P = h(l1, i1, l2, i2, . . . , ir�1, lr)iwhere ik
semantically represents the time interval between two tra-
versed locations. Moreover, we shall generate temporal
movement rule (TMR) in the form of

Rt ¼ hðl1; i1; l2; i2; . . . ; lm�1; im�1Þi ! hðlmÞi

for incorporation into the location prediction mechanisms
so as to achieve low energy and low missing rate in the
OTSNs.

Note that we assume the behavior of moving objects is
often based on certain underlying events instead of ran-
domness completely (Tseng and Lin, 2005, 2006; Tseng
and Tsui, 2004; Yavas et al., 2005). An event is a stream
of locations with time intervals. Note that the characteris-
tics of events in OTSNs include not only location but also
time interval. In our network model, the movement behav-
ior of objects may be decided by certain events or be ran-
dom. Detailed network model will be given in Section 7.1.

In solving the targeted problem, some important perfor-
mance metrics should be considered. In this work, we
adopt two popular metrics named Total Energy Consumed

(TEC) (Xu et al., 2004) and missing rate (Xu et al., 2004).
TEC indicates the total energy consumed by sensor nodes
in the OTSN during data mining phase and object tracking
phase. Missing rate denotes the number of erroneous pre-
dictions in a specified time period in ratio of the total num-
ber of movement of objects. Obviously, low TEC and low
missing rate can benefit the lifetime of the whole network,
and this is the aimed goal for this research.

4. System architecture

Fig. 1 shows the proposed system architecture. We
assume that the movement of objects in wireless sensor
networks is recorded in the system logs (Mani, 2003; Tseng
and Lin, 2005). In our proposed network model, each
Fig. 1. System a
object is able to record the sensor nodes it visited together
with the arrival time at each node. To collect the movement
log, several powerful sensor nodes equipped with storage
devices are deployed over the outer of the network for
retrieving the log of each object that is exiting from the net-
work. The system workflow consists of two main phases:
(1) data mining phase, and (2) object tracking phase. At
first, the sensor network collects and integrates the move-
ment log of moving objects. Then the integrated movement
log is used as the input to the data mining method named
TMP-Mine for discovering the TMPs. By performing the
proposed TMP-Mine algorithm, the TMPs will be discov-
ered and then the TMRs are generated for use by location
prediction so as to track objects in energy efficient manner.
The two phases are described in details in below:

1. Data mining mechanism: The data mining mechanism
consists of three components, namely data integrator,
TMP-Miner and TMR generator. Because the logs are
distributed in the surrounding sensors of the network, a
data integrator is required to integrate and preprocess
the logs collected before the data mining algorithm is
applied on the logs. Table 1 is an example showing the
prepared movement log with time intervals between
visiting to sensor nodes. Take the fourth tuple,
{(f, 0)(e, 5)(b, 13)}, as example, it means the object arrived
in the region of sensor node f, e and b at time point 0, 5 and
13, respectively.Once the log is prepared, TMP-Mine
algorithm will be applied to discover the TMPs from
the integrated log. The functionality of rule generator is
to generate the TMRs from discovered TMPs according
to some parameters like confidence. Afterwards, the
TMRs are utilized by the location prediction strategies
so as to achieve the goal for energy savings. Moreover,
the rule generator will also evaluate the strength of each
TMR for rule ranking (described in details in Section 5.5).

2. Object tracking mechanism: The spirit of the proposed
tracking mechanism is to predict the next location of
each object by utilizing the TMRs. Before activating
rchitecture.

Table 1
An integrated log of temporal moving sequences

Object ID Temporal moving sequence

1 h(a, 1)(e, 3)(c,5)(b, 10)i
2 h(a, 3)(b,5)(c, 7)(d, 12)i
3 h(a, 1)(e, 2)(c,5)(b, 10)i
4 h(f, 0)(e, 5)(b, 13)i
5 h(a, 4)(b,6)(c, 7)(d, 12)i
6 h(f, 0)(a, 4)(c, 6)(d, 10)i
7 h(a, 0)(b,1)(c, 2)(d, 6)i
8 h(f, 1)(e, 3)(b, 8)(d, 14)i

1682 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
the object tracking mechanism, we should dispatch the
TMRs to appropriate sensor nodes. In considering the
property that the storage associated with each sensor
node is limited, we dispatch the TMRs to the sensor
nodes according to the location-based criterion. That is,
only the TMRs that are location related to a sensor node
will be loaded into that node. Take the TMR,
(f, 5)! (b), for example, we would deploy this TMR
at only node f and its neighboring sensors rather than
all the sensors in the network. Dispatching TMRs by
the location-based criterion as described above will
greatly decrease the demands of storage for the sensor
nodes.The tracking mechanism is composed of the loca-
tion prediction strategy and object recovering method.
For location prediction strategies, we propose two
approaches named PTMP and PES + PTMP. PTMP

performs location prediction by employing TMRs with
no need to detect the object velocity. Hence, it can be
applied to the sensor networks with low-end sensor
nodes. The approach PES + PTMP is a hybrid one by
integrating PTMP method with a popular velocity-
based strategy named PES (Xu et al., 2004). Recall that
a sensor node is periodically activated when an object is
in its coverage region according to the scheduling policy.
Under such environments, the prediction mechanism
will be triggered whenever a sensor node loses an object.
If the prediction mechanism fails to recover the object
within a specified deadline, the flooding (Cerpa et al.,
2001) strategy will be activated for recovering the miss-
ing object.
5. Proposed data mining algorithm: TMP-mine

In this section, we first formulate the mining problem
and then propose a novel algorithm named TMP-Mine
that can discover the TMPs efficiently. How the TMRs
are generated is also described. We illustrate the discovery
of TMPs by an elaborate example in the end of this section.

5.1. Formulation of mining problem

Let S = h(l1, rt1)(l2, rt2) . . . (lm, rtm)i be a temporal move-
ment sequence of an object with length equal to m, where li
represents the object’s location at time rti and rti <
rti+1"1 6 i < m. The ascending order of elements in a
sequence is decided by using the time as the key. In order
to discover the temporal movement patterns, we use the time

slot to uniformly segment the time dimension of a sequence.
If the time slot is set to b, we will obtain a transformed
sequence St = h(l1, t1)(l2, t2). . . . , (lm, tm)i, where ti ¼ rti

b

� �
.

Definition 1. A temporal movement sequence S0 ¼
hðl01; t01Þðl02; t02Þ; . . . ; ðl0m; t0mÞi is a sub-pattern of another
access pattern S = h(l1, t1)(l2, t2), . . . , (ln, tn)i, written as
S 0 � S, if m 6 n and there exists a strictly increasing
sequence (k1,k2, . . . ,km) of indices such that for all j ¼
1; 2; . . . ;m; l0j ¼ lkj and t0jþ1 � t0j ¼ tkjþ1

� tkj . Here, S is
called the super-pattern of S 0.
Definition 2. Given a database D = {S1,S2, . . . ,SN} that
contains N temporal movement sequences, the support of
sequence S is defined as

supðSÞ ¼ jfSijS � Si and 1 6 i 6 Ngj
N

:

Definition 3. S = h(l1, t1)(l2, t2), . . . , (lr, tr)i is called a
frequent temporal movement sequence if sup(S) is greater
than or equal to a specified support threshold d, and the
corresponding TMP is written as P = h(l1, i1, l2, i2, . . . , ir, lr)i,
where ik semantically represents the time interval between
lk and lk+1 visiting and ij = tj+1 � tj.

With the above definitions, the problem of discovering
TMPs is defined as follows. Given a database D containing
the temporal movement sequences of objects and a speci-
fied support threshold d, the problem is to discover all
the TMPs existing in this database. In this research, we
propose a new algorithm named TMP-Mine for discover-
ing the TMPs. TMP-Mine uses a special data structure
called TMP-Tree to achieve high efficiency in mining
process.

5.2. TMP-Tree construction

In order to discover the TMPs efficiently, it is required
to construct a TMP-Tree in advance. The purpose of con-
structing TMP-Tree is to aggregate the temporal move-
ment sequences into the memory in a compact form so
that the mining of frequent patterns can be done efficiently.
The main advantages of TMP-Tree are (1) only one phys-
ical database scan is needed to mine all of the frequent pat-
terns, and (2) the TMP-Tree is compact so that the huge
amount of data can be handled efficiently.

Each node in TMP-Tree is termed as location node

(LNode) since it semantically represents the location (i.e.
the sensor node) an object traversed. Each LNode of
TMP-Tree has the following structure:

LNode :¼ fl; c; parent-link; next-link; childrentable; ITreeg

The label of LNode, namely LLabel, is stored in the var-
iable l, and the number of traversed times for the LNode is
stored in the variable c. The parent-link is a pointer linking

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1683
to the parent LNode and the next-link is a pointer linking
to the next LNode with the same LLabel as that of the cur-
rent LNode. All of the children LNodes of the current
LNode are tabulated in the children table. Each LNode
is associated with an interval tree named ITree for record-
ing the temporal information.

Fig. 2 shows the TMP-Tree construction function. The
input to this function is the temporal movement log and
the function returns the TMP-Tree after inserting every
tuple from the log into the TMP-Tree. In the beginning
of the construction, TMP-Tree T is initialized (line 1).
Then, the tuples are retrieved from the log one by one (line
2), and the location path named LPath and interval path

name IPath are extracted from each tuple (line 3 and line
4). Afterwards, the extracted LPath is inserted into the
TMP-Tree and the function returns the last LNode of T

that corresponds to the last LLabel of the LPath. The func-
tion then inserts IPath into the ITree on the returned
LNode.

Besides, a LLabel table is maintained together with a
TMP-Tree to record the total visited times for each
LLabel/sensor node and the last-inserted-LNode for each
Input: the temporal movement log D

Output: TMP-Tree T

Method: TMP_Tree_Construct(D)

1. T

2. FOREACH tuple in D

3. lp ExtractLPath()

4. ip ExtractIPath()

5. lnode InsertLPath(T, lp, 1)

6. InsertIPath(lnode, ip, 1)

7. END FOREACH

8. RETURN T

Φ

Fig. 2. TMP-Tree construction function.

Input: a constructed TMP-Tree T, LPath (Locat

Output: the last LNode on lp

Method: InsertLPath(T, lp, c)

1. lnode root(T), lt getLLabelTabl

2. FOR i = 1 to length(lp)

3. IF (getChildren(lnode, lp[i])) ≠ Φ)

4. lnode getChildren(lnode, lp[

5. Increase the count of lnode by

6. ELSE

7. lnode InsertLChild(lnode, lp

8. set the count of lnode to c

9. tmpnode getLNode(lp[i], lt)

10. setNextLink(lnode, tmpnode)

11. Set the last-inserted-LNode to l

12. ENDIF

13. Increase the count of lp[i] in LLab

14. END FOR

15. RETURN lnode

Fig. 3. LPath inse
LLabel. The logical structure for each tuple of LLabel table
is represented as below:

LLabel :¼ fl; c; last-inserted-LNodeg

Fig. 3 shows the function for inserting an LPath into a
TMP-Tree with specified count. The function first fetches
the root node of T and stores it into a temporary node
lnode, and LLabel table lt (line 1). Then, the function dis-
cretizes the LPath into an array and inserts each label into
TMP-Tree in order (line 2). For a LLabel l, if the lnode has
a child with label = l (line 3), the children table will be
looked up and the entry with label = l is assigned to lnode
(line 4). The count of lnode is also increased by the specified
count (line 5). If lnode has no child with LLabel = l, mean-
ing that the inserting node is a new LNode on the LPath, a
new LNode will be created with LLabel = l (line 7) and the
count of lnode is set as the specified count (line 8). More-
over, the last-inserted-LNode pointer and TMP-Tree struc-
ture (line 9–line 11) will be updated so that we can keep
track of all LNodes with a specified LLabel via the LLabel
table. In the final step, the count of current LLabel in LLa-
bel table is increased (line 13), and the function returns the
last LNode on the LPath (line 15).

Fig. 4 shows the procedure for inserting an IPath into
the ITree on LNode. The node of ITree is termed as inter-

val node, namely INode, for it semantically represents the
time interval between the traversed sensor nodes. The cor-
responding label of INode is termed as interval label or
ILabel. Each INode has the following structure:

INode :¼ fl; c; parent-link; peer-link; childrentableg

The insertion procedure is similar to the LPath inser-
tion, except that this procedure uses peer-link structure
instead of next-link for connecting each INode (line 9).
The peer-link is a pointer that points to the next INode
ion Path) lp, and the count for the LPath c

e(T)

 //the node already exists

i]))

c

[i])

node

el table lt by c

rtion function.

Input: LNode (Location Node) lnode, IPath (Interval Path) ip, and the count for the IPath c

Method: InsertIPath(lnode, ip, c)

1. inode ITree_root(lnode), it getILabelTable(lnode)

2. FOR i = 1 to length(ip)

3. IF (getChildren(inode, ip[i])) ≠ Φ) //the node already exists

4. inode getChildren(inode, ip[i]))

5. Increase the count of inode by c

6. ELSE

7. inode InsertIChild(inode, ip[i])

8. set the count of inode to c

9. tmpnode getINode(i, it)

10. setPeerLink(inode, tmpnode)

11. set the last-inserted-LNode to inode

12. ENDIF

13. Increase the count of ip[i] in ILabel table it by c

14. END FOR

Fig. 4. IPath insertion function.

1684 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
on the same height of the ITree. By keeping track of the
peer-link, it is easy to sum the counts of ILabels on the
same height of ITree.
5.3. TMP-Mine algorithm

Fig. 5 shows the detailed algorithm for TMP-Mine,
which takes a depth-first search (DFS) approach like
WAP-Mine (Pei et al., 2000). While WAP-Mine was
designed for mining of single dimensional sequential pat-
terns, the proposed TMP-Mine algorithm can manipulate
two-dimensional patterns including location and time attri-
butes simultaneously. The algorithm recursively constructs
the TMP-Trees and mines the TMP-Trees until the termi-
nation condition is met. First, we list all the LLabels with
count greater than the support threshold d by scanning
the LLabel table of current TMP-Tree, and the labels are
stored into a temporary set (line 1). If the set is empty (line
2), meaning that no more reconstruction for TMP-Tree is
needed, the prefix pattern of current TMP-Tree is output
as one of the TMPs (line 3). Otherwise, for each frequent
LLabel llabel, we fetch the LNodes with LLabel = llabel

from current TMP-Tree into a temporary set LNode_tmp

by tracking the last-inserted-LNode pointer (line 5 and line
6).

Under the prefix llabel, we accumulate the count of each
distinct LLabel from the ancestor LPaths of LNodes in
LNode_tmp (line 7). The function, getFrequentLIPair(),
returns the set of frequent location-interval pair (LIPair)
where each LIPair in this set is with the count greater than
the support threshold d. We use the set FreqLIPair to
record the frequent LIPair (line 8). If the FreqLIPair is
empty (line 9), meaning no more reconstruction is needed,
the prefix pattern is output as one of the TMPs and the
procedure returns (line 10). Otherwise, we reconstruct the
TMP-Trees for each frequent LIPair in FreqLIPair (line
13), and the mining procedure is invoked recursively (line
14) to discover all of the TMPs.
5.4. TMP-Tree reconstruction

As described in Section 5.3, the mining process of TMP-
Mine requires recursive reconstruction for the TMP-Trees.
Fig. 6 shows the TMP-Tree reconstruction algorithm. The
algorithm begins by initializing a TMP-Tree T 0(line 1). For
each lnode in LNode_tmp (line 2), we get its cross-peer

nodes by iprefix from the ITree (line 3). In a TMP-Tree,
an LLNode and an INode are in cross-peer relation if
and only if they are of the same height. Note that the
LNodes in LNode_tmp have the same LLabel (referred to
line 12–line 15 in TMP-Mine algorithm) and the variable
iprefix is the interval part of the lipair. For example, the
interval part of a LIPair (La,10) is 10. All of the cross-peer
nodes with ILabel = iprefix will be returned with the count
of them summed up (line 4). Then, the function InsertL-
Path() is invoked to insert the new LPath with the sum
as the count, and the last LNode of the LPath is returned
for later insertion (line 5). Afterwards, the IPaths, whose
last INode’s ILabel is equal to the current ILabel, i.e. ipre-

fix, will be inserted into the returned LNode (line 6–line 8).
After all of the LNodes in LNode_tmp are processed, the
function returns the TMP-Tree T 0 (line 10).

5.5. Temporal movement rules

For a discovered TMP, Pt = h(l1, i1, l2, i2, . . . , lm)i, the
form of the corresponding TMR Rt and the definitions of
confidence conf(Pt) and strength strength(Pt) are given as:

Rt ¼ hðl1; i1; l2; i2; . . . ; lm�1; im�1Þi ! hðlmÞi ð1Þ

conf ðP tÞ ¼
supðhðl1; i1; l2; i2; . . . ; lmÞiÞ

supðhðl1; i1; l2; i2; . . . ; lm�1; im�1ÞiÞ
� 100% ð2Þ

We term the last location of antecedent, namely lm�1, as
LLocation. Besides, in order to reveal the strength of each
rule, each rule is ranked by the following formula that con-
siders both of support and confidence:

strengthðRtÞ ¼ supðP tÞ � conf ðP tÞ ð3Þ

Input: a TMP-Tree T, the prefix pattern PfPtn, the LIPair (Location-Interval Pair) lipair, the

LNodes (Location Node) with the same LLabel (Location Label) LNode_tmp

Output: a reconstructed TMP-Tree T’

Method: Reconstruct_TMP_Tree(T, PfPtn, lipair, LNode_tmp)

1. T’

2. FOREACH lnode in LNode_tmp

3.
iprefix getIntervalPart(lipair)

INode_tmp getCrossPeerNodesByILabel(lnode, iprefix)

4. c sum the count

5.
lp getLPath(lnode)

endnode InsertLPath(T’, lp, c)

6. FOREACH inode in INode_tmp

7.
ip getIPath(inode), icount get the count of the inode

InsertIPath(endnode, ip, icount)

8. END FOREACH

9. END FOREACH

10. RETURN T’

Φ

Fig. 6. Algorithm for TMP-Tree reconstruction.

Input: a constructed TMP-Tree T, a specified support , and the prefix pattern PfPtn

Output: all of the frequent TMPs

Method: TMP_Mine(T, , PfPtn)

1. lt LabelTable(T)

FreqL getFrequentLabel(lt,)

2. IF (FreqL ==)

3. output prefix pattern PfPtn and RETURN

4. ENDIF

5. FOREACH llabel in FreqL

6. LNode_tmp getNodesByLLabel(llabel)

7. FreqAncestorLabels getFrequentAncestorLabels(LNode_tmp)

8. FreqLIPair getFrequentLIPair(LNode_tmp, FreqAncestorLabels)

9. IF (FreqLIPair ==)

10. output prefix pattern PfPtn and RETURN

11. ENDIF

12. FOREACH lipair in FreqLIPair

13. T’ Reconstruct_TMP_Tree(T’, PfPtn, lipair, LNode_tmp)

14. newPfPtn generate new prefix pattern

TMP_Mine(T’, , newPfPtn)

15. END FOREACH

16. END FOREACH

Φ

Φ

δ

δ

Fig. 5. TMP-Mine algorithm.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1685
Since a large number of rules could be generated, most
of traditional data mining methods need a function utiliz-
ing hashing tables (Su et al., 2000) or hashing trees (Agra-
wal and Srikant, 1995) to accelerate the rule access.
However, we do not need any accelerating function for
accessing the rules. As described in Section 4, the rules will
be deployed over the networks based on the location-
related criterion. Therefore, dispatching TMRs to sensors
by LLocation of each TMR requires only one scan
over the physical rule repository. Take the antecedent
h(l1, i1, l2, i2, . . . , lm�1, i m�1)i of a TMR for example. Since
the LLocation of the antecedent is lm�1, the sensors to load
this rule are those within the neighboring radius of lm�1.
Considering that the rule that has been dispatched will
not be used again in the future, no accelerating function
is needed in our application.

In Section 7, we will show through experimental results
that ranking rules by strength instead of support or confi-
dence can save more energy. Moreover, if two or more
rules have the same strength value, the rule with larger con-
fidence will be given higher priority over other rules.

5.6. An elaborate example

We illustrate the process of discovering TMPs by an
elaborate example. Fig. 7 shows the TMP-Tree constructed

root

a:5f:3

b:3

c:3

d:3

5d

4e

3f

6c

7b

6a

root

0:1

5:1

13:1
L2

L1

L0

a:1

c:1

d:1

e:2

c:2

b:2

e:2

b:2

d:1

root

0:3

1:1

2:1

6:1

2:2

3:1

8:1

L3

L2

L1

L0

4:1

9:1

root

0:2

1:1

4:1

9:1

2:1

4:1

9:1

L3

L2

L1

L0

root

0:1

2:1

7:1

13:1

L3

L2

L1

L0
root

0:1

4:1

6:1

10:1

L3

L2

L1

L0

Fig. 7. The TMP-Tree constructed from Table 1.

1686 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
from the log in Table 1. In this TMP-Tree, each LNode is
represented in form of ‘‘L:C’’, where L is the LLabel and C
is the count. For illustration, each ITree is surrounded by a
dotted rectangle. The representation of an INode is similar
to that of an LNode, denoted as ‘‘I:C’’, where I is the ILa-
bel and C is the count associated with this ILabel.

Take the first tuple in Table 1, {(a, 1)(e, 3)(c, 5)(b, 10)}, as
example for insertion action. The LPath and IPath extracted
from this tuple are {(a)(e)(c)(b)} and {(1 � 1)(3 � 1)(5 � 1)
(10 � 1)} = {(0)(2)(4)(9)}, respectively. Because the TMP-
Tree is initialized as an empty one, four LNodes for this
LPath are created in the current TMP-Tree. These four LLa-
bels are also tabulated in the LLabel table. Besides, a new
ITree is constructed with the IPath {(0)(2)(4)(9)} on the last
LNode that corresponds to this LPath, i.e., the LNode with
LLabel = b. As stated in Section 5.1, a peer-link structure is
maintained to connect the INodes on the same height of the
ITree. Hence, the peer-links of the entries in the ILabel table
should be set to the corresponding INodes.

In inserting the second tuple, {(a, 3)(b, 5)(c, 7)(d, 12)},
into the TMP-Tree, the first LLabel of the LPath
{(a)(b)(c)(d)} is a, which is already the child of the root
and the count of the LNode is increased by 1 instead of cre-
ating a new LNode for this LLabel. On inserting the next
LLabel b into the TMP-Tree, a new LNode will be created
because the current LNode has only one child labeled as
e instead of b. Note that LLabel b has already existed in
the LLabel table. Hence, it is required to break the link
of last-inserted-LNode of entry b in LLabel table and link
it to the newly created LNode. Meanwhile, the next-link of
the newly created LNode is pointed to the original
LNode, which is the LNode pointed by the original last-
inserted-LNode of entry b. By maintaining this linking
list, we can keep track of all the LNodes with LLabel = b.
The same procedure will be performed on the remaining
two LLabels, c and d. At the last step, the IPath,
{(0)(2)(4)(9)}, is inserted into the ITree of the last LNode
corresponding to LLabel d. The TMP-Tree as shown in
Fig. 7 is constructed by inserting the tuples in Table 1 in

order. Different insertion order will produce different
TMP-Tree structures.

Once the TMP-Tree is constructed, we are able to dis-
cover the TMPs. Fig. 8 illustrates partial of the mining pro-
cess. In the beginning, the LLabels with count greater than
the support threshold will be fetched after a scanning on
the LLabel table. In this example, we set the support
threshold as 20%. It is to say that the pattern with support
greater than or equal to 2 (8 · 20% = 1.6) can be one of the
TMPs. In Fig. 8a, the count of each LLabel is greater than
2, thus all of the LLabels should be considered in the sub-
sequent process. Then, an arbitrary frequent LLabel is
selected as the pattern base for reconstructing the TMP-
Tree. If we take the LLabel d as the pattern base for recon-
struction, three LPaths, {(f)(e)(b)}:1, {(f)(a)(c)}:1 and
{(a)(b)(c)}:3, are obtained as shown in Fig. 8b, where the
numbers denote the count of the LPath that ends with
LLabel = d. Based on the LPaths, the counts of distinct
LLabels are accumulated as shown in Fig. 8c. Meanwhile,
the LLabel e is pruned because the count of LLabel e is less
than the support threshold under the current pattern base
{(d)}.

For each frequent LLabel llabeli, we fetch all the
LNodes with LLabel = llabeli by the last-inserted-LNode
link. Each LNode forms several intervals by subtracting
the ILabel value of the cross-peer INode from the ILabel
value of the base LNode’s cross-peer INode. Take the path
{(f)(e)(b)} for example. The ILabel of b’s cross-peer INode
is 7 and the ILabel of the root’s cross-peer INode, d, is 13.

Table 2
The discovered F-TMPs from Table 1

F-TMPs F-TMPs

(a, 2,b) (b, 1,c)
(a, 2,c, 4,d) (b, 6,d)
(a, 2, c) (c, 4,d)
(a, 4, c) (c, 5,b)
(a, 4,c, 5,b) (c, 5,d)
(a, 6,d) (e,8,b)

5d

4e

3f

6c

7b

6a

3(a)(b)(c)

1(f)(a)(c)

1(f)(e)(b)

2f

1e

2c

2b

2a

1(f,10,d)

2(a,6,d)

2(c,4,d)

2(b,6,d)

1(f,13,d)

1(b,5,d)

1(b,7,d)

2(c,5,d)

1(a,9,d)

1(a,8,d)

root

f:1

a:1

c:1

a:1

b:1

c:1

root

0:1

4:1

6:1
L2

L1

L0

root

0:1

1:1

2:1
L2

L1

L0

1f

1b

2a

2(a,2,c)

2(a,2,c,4,d)

Fig. 8. (a) The LLabel (Location Label) corresponding to the initial TMP-Tree. (b) The LPaths (Location Paths) ending with LLabel = d. (c) The LLabel
(Location Label) table under the pattern base set to d. (d) The summary of LIPairs (Location-Interval Pairs) under the pattern base set to d. (e) The TMP-
Tree under the pattern base set to (c, 4,d). (f) The LLabel table and summary of LIPairs under the pattern base set to (c, 4,d), and the discovered TMP.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1687
The interval between b and d is 6 obtained by subtracting 7
from 13, denoted as (b, 6), which is called a LIPair. The
summary of LIPairs is shown in Fig. 8d, in which the
LIPairs with count less than 2 have been pruned.

The TMP-Mine algorithm advances by concatenating
an arbitrary LIPair with the current prefix pattern as the
new pattern base for reconstruction. For example, Fig. 8e
shows a reconstructed TMP-Tree if we concatenate (c, 4)
to (d) as the pattern base. Referring to Fig. 7, is it observed
that the both LPaths contain (c, 4,d) in the TMP-Tree.
Under the pattern base (c, 4,d), the algorithm will construct
two ITrees for LLabel c. In this TMP-Tree, only LLabel a

is frequent. We continue to accumulate the LIPairs and
only one LIPair, (a, 2), is obtained. Under the pattern base
for the reconstructed TMP-Tree, no LLabel has count
greater than the support threshold. Therefore, (a, 2,c) is
concatenated with the pattern base (c, 4,d) to form a
TMP, as shown in Fig. 8f. By recursively reconstructing
and mining the TMP-Trees, all TMPs will be discovered
as listed in Table 2.
6. Proposed prediction strategies

In this section, we describe how the discovered TMPs
and TMRs are applied to predicting the location of each
missing object. For the generated TMRs as described in
Section 5, they are deployed over the sensor network by
loading the location-related TMRs into corresponding
nodes. We propose two prediction strategies, namely
PTMP and PES + PTMP, for achieving the prediction
tasks. PTMP is a non-velocity-based prediction strategy
that exploits the TMRs to predict the location of the miss-
ing object, while PES + PTMP is a hybrid strategy that
incorporates the well-known velocity-based strategy named
PES with PTMP, using both information of detected veloc-
ity and the TMRs.

In an OTSN, a location prediction requires two message
transmissions in order to know whether the missing object
is recovered. The introduced additional communication
cost caused by the message transmission is the energy con-
sumed by the transmission and receiving operations
between radio components in two sensor nodes and the
activation power of two nodes. Hence, it is infeasible to
have unlimited predictions in real-time and practical object
tracking application. Our pattern-based prediction strate-
gies use the ranked TMRs one at a time in predicting the
location. For simplicity and generality, the real-time con-
straint for prediction is represented by number of predic-

tions or TOP-N predictions in this paper. Hence, a tight
real-time constraint corresponds to a low TOP-N value,
and a loose constraint corresponds to a higher value
contrarily.

Fig. 9 shows the PTMP algorithm for recovering miss-
ing objects. The input parameters for this algorithm are
the N-gram value, N-gram method, TOP-N value, neigh-
boring radius and ranking method for TMRs. The N-gram
method is used to induce the most likely location an object
will visit next based on its previous movement behaviour.
Two variants, namely standard N-gram and N+-gram,
are considered here. The algorithm begins with composing
the antecedent for prediction (line 1). The initial antecedent

Input: N-gram value n, N-gram method Nm, TOP-N constraint , Neighboring radius r, and

Ranking method R

Output: return whether the object can be found by PTMP

Method: PTMP (n, Nm, , r, R)

1. bvr ← Object’s historical movement behavior

2. FOR i=1 to r

3. IF Nm = N+-gram method

4. call PTMP-N+-gram (bvr, n, R,)

5. ELSE IF Nm = N-gram method

6. call PTMP-N-gram (bvr, n, R,)

7. ENDIF

8. IF (the object is recovered)

9. RETURN true

10. ENDIF

11. subtract the number of predictions from

12. IF (> 0)

13.
bvr ← remove the LLocation of bvr and sum the last interval values to form

the new antecedent for prediction

14. ELSE

15. invoke the flooding method to recover the object, and RETURN false

16. ENDIF

17. ENDFOR

Fig. 9. PTMP algorithm.

1688 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
is obtained by concatenating the location, arrival time and
leaving time of the object. Then, either N+-gram or N-gram

(as shown in Fig. 11) is invoked to recover the missing
object (line 3–line 7). If the object can be recovered by
the assigned N-gram method, the OTSN continues to track
the object (line 8–line 10). Otherwise, we subtract the num-
ber of error predictions from the specified TOP-N value,
namely a (line 11). In the end of each round, the algorithm
will check the value of a. If a is greater than 0, it means that
there is still remaining time for more predictions. Hence,
we extend the neighboring radius in each round for obtain-
ing more TMRs. The new antecedent is obtained by remov-
ing the LLocation of the bvr and summing up the last two
interval values (line 13). The purpose of regenerating new
antecedent is to seek more TMRs for prediction. Take
the antecedent h(l1, i1, l2, i2, . . . , lm�1, im�1)i for example.
Suppose that the object is currently at location lm�1 and
there are no more TMRs for prediction, the antecedent will
be modified as h(l1, i1, l2, i2, . . . , lm�2, im�2 + im�1)i, where
Input: N-gram value n, N-gram method Nm, TOP

Ranking method R

Output: return whether the object can be predicte

Method: PES+PTMP(n, Nm, , r, R)

1. use the latest detected velocity of the ob

2. IF (the object is found),

3. RETURN true

4. ELSE

5. call PTMP (n, Nm, -1, r, R)

6. ENDIF

Fig. 10. PES + PT
the LLocation is removed and the last two intervals are
summed for seeking more predictions. Note that the flood-
ing method will be invoked to recover the object if the loca-
tion of object cannot be predicted or no more prediction is
allowed (line 15).

Fig. 10 shows the hybrid prediction algorithm named
PES + PTMP for recovering objects. The input parameters
are the same as those to PTMP and it works as follows. It
first uses the latest detected velocity of the object to predict
its current location (line 1). If the object can not be recov-
ered by the velocity-based prediction, the algorithm will
invoke PTMP to recover the missing object. Here the
TOP-N value is subtracted by 1 due to the error prediction
that has been made by PES (line 5).

Fig. 11a gives the PTMP-N-gram prediction algorithm.
The input parameters for this algorithm are the historical
movement behavior of the object, N-gram value and rank-
ing method for TMRs, and it returns if the object is found
or not. In the beginning, we extract the last n LIPairs from
-N constraint , Neighboring radius r, and

d by PES+PTMP

ject to predict its current location

MP algorithm.

Fig. 11. (a) PTMP-N-gram algorithm. (b) PTMP-N+-gram algorithm.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1689
the movement behavior to form the antecedent for predic-
tion (line 1). By using the antecedent we obtain a conse-
quent set called prediction set from the TMRs, where the
predicted locations are ranked by the specified rule ranking
method such as support, confidence and strength (line 2).
After the prediction set is obtained, the corresponding sen-
sor nodes will be activated one by one to recover the object
by the original node that lost the object (line 4). Finally, the
algorithm returns whether the object is found by PTMP-N-
gram or not.

Fig. 11b gives the PTMP-N+-gram prediction algo-
rithm. The spirit of this algorithm is that the predicting
by a longer antecedent often produces higher precision
than that by a shorter one (Su et al., 2000; Tseng and
Lin, 2006). However, the applicability will decrease with
the increase in antecedent length (Su et al., 2000; Tseng
and Lin, 2006). Therefore, the algorithm starts with high

N-gram value and decreases the N-gram value after each
round for the PTMP-N-gram method (line 2). The acti-
vated node must report back to the original node whether
the missing object is found or not (line 3). The algorithm
terminates only if the object is found or the number of pre-
dictions exceeds the specified value (line 4).
7. Experimental evaluation

In this section, we evaluate the performance for the pro-
posed TMP-Mine algorithm by varying the parameters in
terms of size of movement log and support threshold.
Besides, we evaluate the proposed prediction strategies by
measuring the TEC and missing rate under different time
constraints. To select the best ranking method for TMRs,
we measured the missing rate by applying support, confi-
dence, or strength to ranking the TMRs. Moreover, the
evaluation on variations of PTMP was also discussed. In
the object tracking experiments, 80% of the simulated data
are used for training to obtain TMRs, and the rest 20% are
taken as testing set for object tracking. All of the experi-
ments were conducted on a P4 – 2.4 GHz machine with
1GB main memory. The algorithms and the sensor net-
work simulator are implemented in Java. In the following,
we first describe the simulation model and then report the
representative results for the conducted experiments.
7.1. Experimental setup

To evaluate the performance of the proposed methods,
we implemented a simulator that generates the workload
data of an OTSN. Moreover, we conduct an experiment
on a real dataset. The details of the simulation model
and real dataset will be described in Sections 7.1.1 and
7.1.2, respectively.
7.1.1. Simulation model
Table 3 summarizes the primary parameters used in the

simulation model with the default setting. In the base
experimental model, the network is modelled as a mesh net-
work with size |W| = 20 · 20, and there are N (defaulted as
10,000) objects in this network. Initially, each object arrives
at the network on an arbitrary outer sensor node deploying
outside of the sensor network at some time. We assume
that the behavior of moving objects in the OTSNs is
event-driven instead of randomness completely. Hence,
we use two parameters le and Pe to model the average

Table 3
Primary parameters for the simulation model

Parameter Description Default value

|W| W*W nodes of network 20
N Number of objects in the OTSN 10,000
Pe Average event probability on each node 0.6
le Average event length 4
F Average event fan-out 2
Pb Probability of backward movement 0.1
Pn Probability of next-node movement 0.18
T Tracking time for each object (s) 120
I Average stay time on each node (s) 4
V Average object velocity (m/s) 15
Nr Neighboring radius (nodes) 2

1690 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
length and the event probability, respectively. The length of
each event is modelled by Poisson distribution with mean le
defaulted as 4. The event probability indicates the proba-
bility for an object to adhere to a certain event, and it is
modelled by Normal distribution with mean Pe (defaulted
as 0.6). The events of a node are structured by a tree, in
which the fan-out of each node is modelled by Normal dis-
tribution with mean F (defaulted as 2). Each object in the
network may move by adhering to a certain event or ran-
domly. When an object is in random movement, it will
move back by the probability Pb (defaulted as 0.1) or ran-
domly move to other nodes in the hexagon network struc-
ture by probability Pn = (1 � Pb)/(6 � 1). The node staying
time is modelled by Exponential distribution with mean I

(defaulted as 4). The tracking time for each object is set
as 120 s. We assume the sensing coverage range is 15 m
and the average object velocity is set as 15 m/s. For com-
munications between the sensor nodes and the base sta-
tions, we utilize a well-known routing algorithm named
shortest path multi-hop as used in Xu et al. (2004). We
adopted the Rockwell’s WINS node (WINS project) as
our basis in simulating the energy consumption. Table 4
lists the energy consumption on WINS nodes (Xu et al.,
2004). More detailed power analysis of WINS nodes can
be found in Raghunathan et al. (2002), Tseng and Tsui
(2004), WINS project. The default value settings for the
parameters reflect a reasonable and compact environment
for OTSN and mobile systems as in related studies (Eagle
and Pentland, 2005; Huang et al., 2003; Lin et al., 2006;
Wu et al., 2001; Xu et al., 2004).

7.1.2. Real dataset

To evaluate the practicability of our prediction strate-
gies, we also tested a real dataset from CRAWDAD, which
Table 4
Energy consumption on WINS nodes

Component Mode Power (mW)

MCU Activate 360
MCU Sleep 0.9
Sensor Activate 23
Radio Transmission 720
Radio Receiving 369
was collected in a project named Reality Mining (Reality
Mining Project) by MIT Media Lab for discovering com-
plex social behavior (Eagle and Pentland, 2005). The data
collects the behavior of one hundred users during the per-
iod between July 19, 2004 and May 5, 2005. In the dataset,
the Bluetooth devices are used to represent the location of
an object as suggested in Eagle and Pentland (2005) for sev-
eral practical considerations like weak signals in large
buildings. We consider the proximate Bluetooth devices
as the location in our experiments. In the raw log, each
record is represented by the following attributes: record
ID, start time, end time, person ID, and device ID. After
a scan on the raw log, a sequence of movement with person
ID as the primary key can be obtained. Note that the
device ID is the static Bluetooth device ID used to repre-
sent the location. The number of distinct Bluetooth devices
is 20,794.

7.2. Study on performance of TMP-Mine

In this part of experiments, we investigate the perfor-
mance of TMP-Mine in terms of execution time by varying
the parameters, namely size of movement log and support
threshold.

7.2.1. Effects of varying the size of movement log

In this experiment, we evaluate the scalability of TMP-
Mine by varying the size of movement log from 10,000 to
100,000 records. We first discuss the execution time, which
includes the data loading time and mining time. The load-

ing time consists of the time for loading data from hard
disk and constructing initial TMP-Tree, while the mining

time is the time consumed by TMP-Mine algorithm. Obvi-
ously, the loading time depends upon the number of log
records. As shown in Fig. 12a, the loading time increases
approximately linearly with the number of records
increased.

Fig. 12b shows that the required memory increases
under larger movement log. Under the same parameter set-
ting, the movement behavior in a large dataset is more
complex than it is in a small one because there may exist
more patterns with support slightly greater than the mini-
mum support in the larger dataset. In other words, the
TMP-Tree will have more branches on each node in a lar-
ger dataset. Hence, the number of frequent labels and
reconstructions are increased. Consequently, the mining
time is higher and more memory is required for larger
datasets.

7.2.2. Effects of varying the support threshold

This experiment analyzes the impact of varying the sup-
port threshold from 0.1% to 1.0%. As stated in Section 5.4,
we should reconstruct a TMP-Tree for each label that is
greater than the minimum support. As listed in Table 5,
the number of TMPs increases with the decrease in support
threshold. Therefore, the lower support threshold directly
results in more frequent labels and reconstructions, which

Fig. 12. (a) The execution time vs. log size. (b) The memory requirement
vs. log size. Fig. 13. (a) Execution time vs. support threshold. (b) Memory require-

ment vs. support threshold.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1691
will increase the mining time as shown in Fig. 13a. As to
the loading time, it keeps fixed for different support thresh-
old values since the dataset is invariant. This experiment
demonstrates the excellent performance of TMP-Mine even
under the low support threshold.

Fig. 13b shows that the required memory increases with
the decrease in the support threshold. The reason is that the
lower support threshold might have more frequent labels in
the TMP-Tree, and the load of TMP-Mine is to allocate
more memory to store the frequent labels and the branches.
7.3. Study on performance of prediction strategies

In the following series of experiments, we measure the
TEC and the missing rate of the proposed prediction strat-
egies. TEC indicates the total energy consumed by the
OTSN in tracking all objects, and missing rate is the ratio
Table 5
Number of TMPs under different support threshold

Sup. 0.1 0.2 0.3 0.4
|TMPs| 19697 5341 2365 1253
of the error predictions to the total number of movement of
objects within a specified deadline. The goal of prediction
strategies is to track the moving objects with low TEC

and low missing rate. Through the performance study on
prediction strategies, we use 80% of the simulated data as
training set to obtain TMRs, and the rest 20% as testing
set for object tracking.
7.3.1. Selection of ranking method

Fig. 14 shows the impact on missing rate when the
TMRs are ranked by strength, support and confidence,
with the training data occupying 80% of the dataset. It is
clear that the strength-ranking approach delivers overall
lowest missing rate among the three ranking methods.
Moreover, it is observed that the confidence-ranking
method has the worst performance in missing rate since
0.5 0.6 0.7 0.8 0.9 1.0
743 473 341 233 172 132

TOP-N

0 8

M
is

si
ng

 R
at

e

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Confidence
Strength
Support

2 3 4 5 6 71

Fig. 14. The missing rate for using strength, support, and confidence to
rank the TMRs.

1692 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
this kind of ranking might recommend a rule with high
confidence but very low support. The strength-ranking
method considers both the support and confidence of a rule
and is demonstrated to have the best performance in terms
of missing rate. Therefore, we adopt the strength-ranking
method in the subsequent experiments.

In this experiment, we also evaluated the effects of vary-
ing the proportion of training set from 50% to 90% of the
whole dataset. Although it is observed that the missing rate
increases when the proportion of training data is decreased,
the mean of standard deviation of the differences under dif-
ferent TOP-N values is only about 1.85%, which is slight as
compared with the mean of missing rate (the detailed
experimental results are not shown here due to space limi-
tation). This means that the proposed method can still keep
robust performance under varied separation ratios for
training data vs. testing data. Hence, we set the ratio of
training set as 80% of the dataset, which is used popularly
in data mining researches (Han and Kamber, 2000).

7.3.2. Performance of variations of PTMP
Fig. 15 shows the performance of PTMP-N-gram and

PTMP-N+-gram in terms of TEC and missing rate with
TOP-N varied from 1 to 7. As shown in Fig. 15a, the
TEC of PTMP with 1-gram, (denoted as PTMP-1-gram)
and PTMP-3+-gram decrease greatly with the increase of
TOP-N. Comparatively, the TEC for PTMP-2-gram and
PTMP-3-gram decreases much slowly. This phenomenon
can be explained by investigating the number of generated
TMRs. In our experiments, it is observed that the average
number of TMRs stored in each sensor node with length
greater or equal to 2 is about 3.56 in average, which is
much less than that with length equal to 1 (about 7.70).
Therefore, the PTMP-2-gram and PTMP-3-gram will often
invoke the flooding recovery for the missing objects due to
the few TMRs.

The reason why the TEC of PTMP-1-gram decreases
greatly with the increase of TOP-N value is that more
TMRs are used for prediction. Note that the number of
activated sensor nodes by the flooding method is
(6 · 1 + 6 · 2 + � � �+ 6 · m) = 6 · (m + m2)/2, where the
value 6 is the number of neighboring sensors in hexagon
network structure and m is the distance (in number of sen-
sors) between the missing object and the original sensor
node. Obviously, the energy consumed by the flooding
method is much higher than that by our prediction strate-
gies. This explains the phenomenon that the higher TOP-N
value is, the lower TEC of PTMP-3-gram and PTMP-3+-
gram will be. In addition, the observation that the TEC

of PTMP-3+-gram is always lower than that of PTMP-3-
gram is due to the following facts: (1) The prediction set
for greater N-gram value has higher priority when we use
PTMP-3+-gram for location prediction; (2) Prediction by
using a longer antecedent usually produces higher precision
than that by a shorter one.

Fig. 15b shows the missing rate for the variations of
PTMP method with TOP-N varied from 1 to 7. Although
PTMP-3-gram and PTMP-2-gram produce high precision
results, the applicability (Su et al., 2000) is low. The low
applicability indicates that only limited portions of move-
ment behaviors can be predicted by TMRs. Hence, the
missing rate is high and this results in high TEC. Besides,
it is observed that PTMP-3+-gram have the lowest TEC

and the lowest missing rate among the four methods. This
is because it can dynamically adjust itself to taking advan-
tage of the property of PTMP-N-gram that high precision
and high applicability can be achieved under high N value
and low N value, respectively. Hence, we shall use PTMP-
3+-gram as the base prediction method in comparisons
with other methods in the subsequent experiments. More-
over, it is also observed that the number of TMRs with
length greater than or equal to 4 is about 0.67, indicating
that setting higher N value for PTMP-N+-gram (like
PTMP-4+-gram) will not result in significant improvement
on TEC and missing rate.

7.3.3. Comparisons of different prediction methods

This experiment investigates the performance of differ-
ent prediction methods in terms of TEC, i.e., the efficiency
in energy saving. Four kinds of prediction methods are
compared, namely Continuous Monitoring (CM) (Xu
et al., 2004), PES (Xu et al., 2004), PTMP and
PES + PTMP. Here, PES + PTMP is a hybrid method by
integrating PES (Destination, Instant) method with PTMP.
The reason we choose PES (Destination, Instant) for inte-
gration is described below. Through our experiments we
found PES (Destination, Instant) is the most energy effi-
cient method proposed in Xu et al. (2004). This is because
we use parameters Pb and Pn in our model to simulate the
activities of objects while not follow the assumption that
the object highly intends to move straight forward (Xu
et al., 2004), which benefits the other PES variations. The
method PES (Destination, Instant) activates only one sen-
sor node per prediction, i.e., the energy penalty is the
energy consumed for activating the node when incorrect
prediction is made. We also observed that the accuracy

TOP-N

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

300x103

400x103

500x103

600x103

700x103

800x103

PTMP-1-gram
PTMP-2-gram
PTMP-3-gram
PTMP-3+-gram

TOP-N

M
is

si
ng

 R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PTMP-1-gram
PTMP-2-gram
PTMP-3-gram
PTMP-3+-gram

0 82 3 4 5 6 710 82 3 4 5 6 71

Fig. 15. (a) TEC and (b) missing rate for PTMP-N-gram and PTMP-N+-gram with TOP-N value varied.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1693
of the other variations is not absolutely higher than PES

(Destination, Instant) but the energy penalty is much higher
than it because more than one node will be activated for
searching the missing object. We therefore integrate PES

(Destination, Instant) with our strategy for comparison.
For the PTMP method, we investigate the impacts of vary-
ing the support threshold value. Furthermore, we tested
different values on parameter X for PES (Destination,
Instant) method as well as the hybrid methods.

Fig. 16 shows the experimental results. Note that CM,
PES (X = 0.1) and PES (X = 0.5) are not influenced by var-
ied support threshold, and the TEC results for them are
shown as PES (X = 0.1) > PES (X = 0.5) > CM. Recall
that in our network model the activated node is scheduled
to be in active mode for X seconds and in sleeping mode for
(T � X) seconds during the T seconds periodically to save
the energy. We then explain the phenomenon by the fol-
lowing observations. If an object changes its velocity or
moving direction when the corresponding sensor node is
in sleeping mode, PES (X = 0.1) incurs higher probability
in missing the object than PES (X = 0.5). Furthermore,
since the average velocity in our base model is set as 15
(m/s), the object might move far from the original sensor
when the original sensor node is activated again from its
sleeping mode. Consequently, the PES with higher X value
incurs lower probability in missing objects, indicating that
less energy will be consumed because fewer flooding recov-
eries are performed.

For the TEC of PTMP, it is observed that it increases
with the increase in the support threshold. In particular,
the TEC of PTMP is less than that of CM when the sup-
port threshold is lower than 0.2. The reason is that PTMP
is a pattern-based prediction strategy depending on the
TMRs. Fewer TMRs will result in lower applicability.
Consequently, PTMP will often apply the flooding method
for recovering the missing objects. In contrast, the more
TMRs we have, the more energy is required to dispatch
the rules over the location-related sensor nodes by data dis-
semination strategies. In the experiment, we observe that
the flooding strategy is invoked considerable times in
recovering the missing object due to low applicability. Note
that the data dissemination method is only invoked once
for dispatching TMRs in the data mining phase. Obvi-
ously, the energy penalty of low applicability due to insuf-
ficient TMRs is much higher than that of rule dispatching.
Hence, the TEC decreases under lower support threshold
even though the energy required to dispatch the TMRs is
increased. We suggest that the support threshold for PTMP
should be set as a small value in order to obtain enough
TMRs for enhancing the applicability. In fact, a small sup-
port threshold results in only more computation time in the
offline mining process and will benefit the online prediction
substantially.

For the hybrid methods, namely PES (X = 0.1) +
PTMP and PES (X = 0.5) + PTMP, we observe that either
of them has lower TEC than those of the pure PTMP or
PES. This is because the hybrid strategy exploits both
advantages of velocity-based method and event-based
method for prediction. That is, the hybrid strategy gets
one more chance to predict the location by TMRs instead
of immediately using the flooding method to recover the
object if PES fails to make correct prediction. Further-
more, we observe that TEC of hybrid strategies decrease
with the decrease in support threshold. The reason is sim-
ilar to that for pure PTMP.

7.3.4. Effects of varying the event probability (EP) and

TOP-N Value

We explore the impact on missing rate by varying the
EP and TOP-N values, as shown in Fig. 17. The EP indi-
cates the probability for an object to adhere to some certain
event. In Fig. 17, we observe that the missing rate decreases
with the increase in TOP-N under a fixed EP. The reason is
similar to that as described in Section 7.3.3. We also
observe that the missing rate decreases with the decrease
in the EP under a fixed TOP-N. Since the higher EP means
that an object has higher probability to adhere to a certain
event, we get higher probability to obtain correct location
by the proposed pattern-based prediction method. Hence,
the higher EP results in lower missing rate.

Support Threshold (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

200x103

300x103

400x103

500x103

600x103

700x103

800x103

CM
PES (X=0.1)
PES (X=0.5)
PES (X=0.1)+PTMP
PES (X=0.5)+PTMP
PTMP

Fig. 16. The TEC with support threshold varied for CM, PTMP and PES + PTMP.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2
3

4
5

6
7

0.4

0.5

0.6

0.7

0.8

M
is

si
ng

 R
at

e

TOP-N

Event Probability

Fig. 17. The missing rate with EP and TOP-N varied for PTMP-3+-gram.

1694 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
7.3.5. Effects of varying the object velocity

In this experiment, we measure the TEC with the object
velocity varied from 7.5 m/s to 37.5 m/s. Fig. 18a demon-
strates that the hybrid strategy PES + PTMP can save
more energy than pure PES strategy and PTMP strategy.
As the velocity increases, the TEC of all of the methods
increases. Moreover, we observe the improved ratio in
TEC for proposed hybrid strategy over PES increases with
the increase in the velocity, as listed in Table 6. Here the
improved ratio is defined as follows:

r ¼ TECðPESÞ � TECðPES þ PTMP Þ
TECðPESÞ
This can be explained by the following two reasons.
First, more energy is required when a sensor node loses
an object with higher velocity. This is because the number
of nodes activated by the flooding method may also be
higher since the object is now far away from the original
node. Another reason is that the number of TMRs
decreases with the increase in the velocity. We explain the
phenomenon by using the density graphs as shown in
Fig. 18b. In the density graph of object movement, the gray
level of each pixel is normalized by dividing the visited
times of nodes by maximum visited times. Note that each
object enters the network from the outer nodes. Under
the low velocity, the outside nodes of the network will

Velocity (m/s)

7.5 15.0 22.5 30.0 37.5

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0.0

500.0x103

1.0x10 6

1.5x10 6

2.0x10 6

2.5x10 6

PTMP
PES (X=0.1)
PES (X=0.5)
PES (X=0.1) + PTMP
PES (X=0.5) + PTMP

V = 7.5 m/s

V = 37.5 m/s

Fig. 18. (a) The TEC with average object velocity varied for PES, PTMP and PES + PTMP. (b) The density graph of object movement with the average
velocity as 7.5 m/s and 37.5 m/s.

Table 6
The improved ratio on TEC for proposed hybrid strategy over PES.

7.5 m/s 15 m/s 22.5 m/s 30 m/s 37.5 m/s

X = 0.1 0.429 0.547 0.642 0.692 0.699
X = 0.5 0.492 0.555 0.622 0.673 0.68

Network Size
100X100 200X200 300X300 400X400 500X500

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

700x103

720x103

740x103

760x103

780x103

800x103

820x103

840x103

Fig. 19. The TEC with network size varied for PTMP-3+-gram.

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1695
attract more visits than the sensors in the inner circle of
network. On the contrary, the visits will be dispersed when
the average velocity of objects is high. Fig. 18b illustrates
the density graphs with the average velocity set as 7.5 m/s
and 37.5 m/s, respectively. The higher velocity disperses
the visits and results in the decrease of the number of
TMRs whose support is greater than the specified thresh-
old. Consequently, fewer number of TMRs results in
higher missing rate, which in turn cause more flooding
recoveries and higher TEC.

7.3.6. Effects of varying the network size

In this experiment, we study the effect of varying the net-
work size from 100 · 100 (10,000 nodes) to 500 · 500
(250,000 nodes). Fig. 19 shows that the TEC is increased
with the increase in network size, and it becomes stable when
the network size is larger than 300 · 300. As stated in the
simulation model, 10,000 objects were generated with the
tracking time set as 120 s for each of the five datasets. Hence,
fewer TMRs are discovered and the prediction applicability
of PTMP becomes lower under a larger network since the
objects are more dispersed. Consequently, the TEC is higher
under a larger network due to more executions of flooding
recovery. This indicates that the performance of PTMP
depends on the number of TMRs discovered. However,
the performance gain by PTMP will still be significant under
a large network if more objects reside in the network such
that more TMPs can be discovered.
7.4. Study on real dataset

For the real dataset as described in Section 7.1.2, we
evaluate the performance of our methods in terms of
TEC by varying the support threshold and TOP-N values.
Before the experiments, we filter out the initial records with
date earlier than 1 August, 2004 due to the sparse distribu-
tion. Then, the records of the first four months are used as
the training set and that of the fifth month (i.e., December,
2004) is used as the testing set. Since the deployment struc-
ture of the static Bluetooth devices is unknown, we assume
the velocities of objects to be between 1 m/s and 10 m/s
that are reasonable for the environment of the dataset. In
this way, we can obtain the distance between a person
and the node that missed the person by multiplying the
missing time with velocity. This information is needed for
calculating the recovering energy when the flooding strat-
egy is invoked.

156x106

158x106

160x106

162x106

164x106

166x106

168x106

170x106

172x106

174x106

176x106

0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

0.45
0.50

2
3

4
5

6

7

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n

Support T
hreshold (%

)

TOP-N

Fig. 20. The TEC of PTMP-3+-gram on the real dataset.

1696 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
Fig. 20 shows the results for TEC for PTMP-3+-gram
with support threshold and TOP-N varied. We observe
that the TEC increases dramatically with the increase in
TOP-N when the support threshold is lower than 0.10%.
On the contrary, the TEC decreases with the increase in
TOP-N when the support threshold is higher than 0.10%.
The above phenomenon is due to that there exist many
noisy TMRs when support threshold is too low. The noisy
TMRs will incur the penalty of energy in activating incor-
rect sensor nodes. Another observation is that the TEC
decreases with the increase in support threshold under
the same TOP-N constraint. In particular, when the sup-
port threshold is lower than 0.25%, the required energy
decreases dramatically with the increase in support thresh-
old. The reason is that the number of noisy TMRs is sen-
sitive to the support threshold. Therefore, setting a
suitable support threshold is important and it can be deter-
mined via experiments. In fact, the experimental results on
real dataset are consistent with that of simulated dataset
and this also shows the soundness of the simulation model.
7.5. Summary of experimental results

The above experiments consist of two parts: the perfor-
mance study on TMP-Mine and that of proposed predic-
tion strategies. For the performance of TMP-Mine, it is
observed that the TMP-Mine performs well in terms of exe-
cution time even under the large dataset (e.g. 100 K) and
small threshold (like 0.1%). For the performance of pro-
posed prediction strategies, we first decide the suitable
ranking method for TMRs and found that strength-rank-
ing method has the lowest missing rate. For the tracking
methods, we found that PTMP-3+-gram performs best in
terms of TEC and missing rate under different TOP-N con-
straints. Moreover, it is observed that the support should
be set as a lower value to obtain enough TMRs for benefit-
ing the applicability of the pattern-based strategies. We
also observe that integrating PTMP with velocity-based
tracking strategy is the more efficient approach if the veloc-
ity of objects can be detected. To study the effects of the
behavioral characteristics of objects, the parameters EP
and object velocity are varied in the experiments and the
results show that a higher EP value will reduce the missing
rate. Meanwhile, our proposed methods outperform PES,
especially when the velocity is high. Finally, the experimen-
tal results on real dataset indicate that the energy penalty
will occur due to noisy TMRs if the support threshold is
too low.
8. Conclusions and future work

In this paper, we have proposed a novel data mining
algorithm and the accompanied prediction strategies for
tracking the objects in energy efficient manner in OTSNs.
The proposed data mining algorithm, namely TMP-Mine,
can efficiently discover the TMPs for moving objects since
only one physical scan on the database is needed. Besides,
our study on integrated analysis of both mobility and time
interval complements the insufficiency of the past studies
that focused on only the aspect of mobility analysis or tem-
poral relationships. To our best knowledge, this is the first
work on mining the movement patterns with time intervals

V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698 1697
in OTSNs. Through empirical evaluation and sensitivity
analysis under various system conditions, TMP-Mine is
shown to perform excellently in terms of execution effi-
ciency and scalability.

In the aspect of prediction strategies, we propose a pat-
tern-based prediction strategy named PTMP and a hybrid
strategy named PES + PTMP integrating the PES method
with PTMP. The pure pattern-based prediction strategy
works with no need to detect the object velocity; hence, it
can be applied to the sensor networks with low-end sensor
nodes. The hybrid strategy that exploits both the informa-
tion of object velocity and movement patterns was shown
to outperform PTMP and PES in terms of the energy con-
sumption in an OTSN. Therefore, the hybrid strategy
serves as an excellent mechanism for OTSNs in which the
sensors are equipped with velocity detection ability. To
adapt to the limited storage and weak computation ability
of sensor nodes, a rule dispatching mechanism is also
devised by complying the location-based criterion. Through
experimental evaluation, it is shown that ranking rules by
strength criteria delivers better results in terms of TEC

and missing rate than that by using confidence or support.
For the future work, we will apply TMP-Mine on more

real datasets and also evaluate the performance of the pro-
posed prediction strategies. Besides, since the discovered
TMPs can be exploited in wide applications, we will apply
the TMP-Mine method on applications like data dissemi-
nation and vehicle monitoring, with the aim to enhance
the quality of new applications in sensor networks.

Acknowledgements

This research was partially supported by Ministry of
Economic Affairs, R.O.C., under grant no. 92-EC-17-A-
02-51-024 and by National Science Council, R.O.C., under
grant no. NSC 93-2213-E-006-030.
References

Agrawal, R., Srikant, R., 1995. Mining sequential patterns. In: Proceed-
ings of the 11th International Conference on Data Engineering, pp. 3–
14.

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002.
Wireless sensor networks: a survey. Computer Networks 38 (4), 393–
422.

Ale, J.M., Rossi, G.H., 2000. An approach to discovering temporal
association rules. In: Proceedings of the 2000 ACM Symposium on
Applied Computing. pp. 294–300.

Carle, J., Simplot, D., 2004. Energy-efficient area monitoring for sensor
networks. IEEE Computer 37 (2), 40–46.

Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J., 2001.
Habitat monitoring: application driver for wireless communications
technology. In: Proceedings of the First ACM SIGMOMM Workshop
on Data Communications in Latin America and the Caribbean.

CRAWDAD Project. http://crawdad.cs.dartmouth.edu/index.php.
Eagle, N., Pentland, A., 2005. Reality mining: sensing complex social

systems. Personal and Ubiquitous Computing 10 (#4), 2006.
Goel, S., Imielinski, T., 2001. Prediction-based monitoring in sensor

networks: taking lessons from MPEG. ACM Computer Communica-
tion Review 31 (5).
Guil, F., Bosch, A., Marin, R., 2004. TSET MAX: an algorithm for
mining frequent maximal temporal patterns. In: Proceedings of the
Workshop on Temporal Data Mining: Algorithms, Theory and
Applications (TDM’04), pp. 71–77.

Han, J., Kamber, M., 2000. Data mining: Concepts and Techniques.
Morgan Kaufman Publishers, ISBN 1-55860-489-8.

Hara, T., Murakami, N., Nishio, S., 2004. Replica allocation for
correlated data Items in ad hoc sensor networks. SIGMOD Record
33 (1), 38–43.

Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H., 2000. Energy-
efficient communication protocol for wireless microsensor networks.
In: Proceedings of the 33rd Hawaii International Conference on
System Sciences.

Huang, J.L., Chen, M.S., Peng, W.C., 2003. Exploring group mobility for
replica data allocation in a mobile environment. In: Proceedings of the
ACM International Conference on Information and Knowledge
Management, pp. 161–168.

Kyriakakos, M., Hadjiefthymiades, S., Frangiadakis, N., Merakos, L.F.,
2003. Multi-user driven path prediction algorithm for mobile comput-
ing. In: Proceedings of 14th International Workshop on Database and
Expert Systems Applications (DEXA’03), pp. 191–195.

Lee, J.T., Wang, Y.T., 2003. Efficient data mining for calling path patterns
in gsm networks. Information Systems 28 (8), 929–948.

Li, Y., Ning, P., Wang, X.S., Jajodia, S., 2003. Discovering calendar-
based temporal association rules. Data and Knowledge Engineering
44, 193–218.

Lin, C.Y., Peng, W.C., Tseng, Y.C., 2006. Efficient in-network moving
object tracking in wireless sensor networks. IEEE Transaction on
Mobile Computing 5 (8).

Mani, M., 2003. Understanding the semantics of sensor data. ACM
SIGMOD Record 32 (4).

Padmanabhan, V., Mogul, J., 1996. Using predictive prefetching to
improve world wide web latency. ACM Computer Communication
Review 26 (3).

Padmanabhan, B., Tuzhilin, A., 1996. Pattern discovery in temporal
databases: a temporal logic approach. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining,
pp. 351–354.

Palpanas, T., Mendelzon, A., 1999. Web prefetching using partial match
prediction. In: Proceedings of the Fourth Web Caching Workshop.

Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H., 2000. Mining access patterns
efficiently from web logs. In: Proceedings of the Fourth Pacific Asia
Conference on Knowledge Discovery and Data Mining, pp. 396–407.

Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B., 2002. Energy
aware wireless microsensor networks. IEEE Signal Processing Mag-
azine 19 (2), 40–50.

Reality Mining Project. http://reality.media.mit.edu/.
Roddick, J.F., Spiliopoulou, M., 2002. A survey of temporal knowledge

discovery paradigms and methods. IEEE Transactions on Knowledge
and Data Engineering 14 (4), 750–767.

Shih, E., Cho, S., Ickes, N., Min, R., Sinha, A., Wang, A., Chandrakasan,
A., 2001. Physical layer driven protocol and algorithm design for
energy-efficient wireless sensor networks. In: Proceedings of Seventh
ACM International Conference on Mobile Computing and Network-
ing (Mobicom’01), pp. 272–287.

Srikant, R., Agrawal, R., 1996. Mining sequential patterns: generalizations
and performance improvements. In: Proceedings of the Fifth Interna-
tional Conference on Extending Database Technology (EDBT’06).

Su, Z., Yang, Q., Lu, Y., Zhang, H., 2000. WhatNext: a prediction system
for web requests using n-gram sequence models. In: Proceedings of the
First International Conference on Web Information Systems and
Engineering (WISE’00), pp. 200–207.

Tseng, V.S., Lin, K.W., 2005. Mining temporal moving patterns in object
tracking sensor networks. In: Proceedings of the International Workshop
on Ubiquitous Data Management (held with ICDE’05), pp. 105–112.

Tseng, V.S., Lin, K.W., 2006. Efficient mining and prediction of user
behavior patterns in mobile web systems. Information and Software
Technology 48 (6), in press.

http://crawdad.cs.dartmouth.edu/index.php
http://reality.media.mit.edu/

1698 V.S. Tseng, K.W. Lin / The Journal of Systems and Software 80 (2007) 1678–1698
Tseng, S.M., Tsui, C.F., 2004. Mining multi-level and location-aware
associated service patterns in mobile environments. IEEE Transactions
on Systems, Man and Cybernetics: Part B 34 (6).

Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F., 2004. Location tracking
in a wireless sensor network by mobile agents and its data fusion
strategies. The Computer Journal 47 (4).

WINS project, Rockwell Science Center. http://wins.rsc.rockwell.com.
Woo, A., Culler, D., 2001. A transmission control scheme for media access

in sensor networks. In: Proceedings of Seventh ACM Annual
International Conference on Mobile Computing and Networking
(Mobicom’01), pp. 221–235.

Wu, H.K., Jin, M.H., Horng, J.T., 2001. Personal paging area design
based on mobiles moving behaviors. In: Proceedings of IEEE Infocom.
Xu, Y., Winter, J., Lee, W.C., 2004. Prediction-based strategies for energy
saving in object tracking sensor networks. In: Proceedings of the Fifth
IEEE International Conference on Mobile Data Management
(MDM’04), pp. 346–357.

Yang, Q., Li, T., Wang, K., 2004. Building association rule based
sequential classifiers for web document prediction. Journal of Data
Mining and Knowledge Discovery 8 (3), 253–273.

Yavas, G., Katsaros, D., Ulusoy, Ö., Manolopoulos, Y., 2005. A data
mining approach for location prediction in mobile environments. Data
and Knowledge Engineering 54 (2).

Ye, W., Heidemann, J., Estrin, D., 2002. An energy-efficient mac protocol
for wireless sensor networks. In: Proceedings of the 21st IEEE
Infocom, pp. 1567–1576.

http://wins.rsc.rockwell.com

	Energy efficient strategies for object tracking in sensor networks: A data mining approach
	Introduction
	Related work
	Problem statement
	System architecture
	Proposed data mining algorithm: TMP-mine
	Formulation of mining problem
	TMP-Tree construction
	TMP-Mine algorithm
	TMP-Tree reconstruction
	Temporal movement rules
	An elaborate example

	Proposed prediction strategies
	Experimental evaluation
	Experimental setup
	Simulation model
	Real dataset

	Study on performance of TMP-Mine
	Effects of varying the size of movement log
	Effects of varying the support threshold

	Study on performance of prediction strategies
	Selection of ranking method
	Performance of variations of PTMP
	Comparisons of different prediction methods
	Effects of varying the event probability (EP) and TOP-N Value
	Effects of varying the object velocity
	Effects of varying the network size

	Study on real dataset
	Summary of experimental results

	Conclusions and future work
	Acknowledgements
	References

