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Abstract

This paper presents an analysis of continuous cellu-
lar tower data representing five months of movement
from 215 randomly sampled subjects in a major urban
city. We demonstrate the potential of existing com-
munity detection methodologies to identify salient lo-
cations based on the network generated by tower tran-
sitions. The tower groupings from these unsupervised
clustering techniques are subsequently validated using
data from Bluetooth beacons placed in the homes of the
subjects. We then use these inferred locations as states
within several dynamic Bayesian networks to predict
each subject’s subsequent movements with over 90%
accuracy. We also introduce the X-Factor model, a
DBN with a latent variable corresponding to abnormal
behavior. We conclude with a description of extensions
for this model, such as incorporating additional contex-
tual and temporal variables already being logged by the
phones.

Introduction
While there has been significant gains in the market of GPS-
enabled phones, GPS is available on less than 5% of the ap-
proximately 4 billion mobile phones in use today. However,
every cellular phone has access to information about the
proximate cellular towers to which it is attached. The contri-
butions of this paper are to introduce the usage of commu-
nity structure algorithms to identify salient locations from
cellular tower networks, and to build a dynamic, generative
model that is extendable to multi-modal data and can be used
for behavior prediction. We show that using temporal data
from cellular towers, information every phone has access to,
it is possible to infer a user’s salient locations and anticipate
subsequent movements.

We begin by presenting related work that has used con-
tinuous cellular tower data for location estimation and loca-
tion data to train probabilistic graphical models on human
movement patterns. We then introduce our own data set,
which we believe is the first of its kind to use exclusively
randomly sampled subjects. We introduce several segmen-
tation algorithms taken from the community structure litera-
ture and apply them to networks of cellular towers. Coupling
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bluetooth beacon data placed in the homes of each subject
with the tower data, we validate the output of the commu-
nity structure algorithms with the community of towers co-
present with the beacon exposures in each subject’s home.
We then describe several DBNs that use the inferred loca-
tions clusters as states to parametrize and predict subsequent
movements. One such DBN we use for behavioral modeling
includes a latent variable, the X-Factor, corresponding to a
binary switch indicative of “normal” or “abnormal” behav-
ior. We conclude with ideas for extensions to these models
as future work.

There has recently been a significant amount of research
quantifying and modeling human behavior using data from
mobile phones. We will highlight a selection of the liter-
ature on GSM trace analysis and subsequently discuss re-
cent work on location segmentation and movement predic-
tion from GPS data.

Cellular Tower Data Analysis Mobile phones are contin-
uously, passively monitoring signals from proximate cellular
towers. However, due to power constraints, a mobile phone
typically does not continuously send back similar signals
alerting the nearby towers of its particular location. While
there has been recent work on analysis of data from mobile
phone operators (González, Hidalgo, and Barabási 2008;
Onnela et al. 2007), call data records (CDR) from opera-
tors only provide estimates of locations when the phone is
in use.1 Therefore, the only method of obtaining continuous
cellular tower data is by installing a logging application on
the mobile phone itself.

There have been a variety of projects that have involved
installing a mobile phone application that logs visible cellu-
lar towers and Bluetooth devices on a set of subjects phones
including HIIT’s Context project, MIT’s Reality Mining
project (Eagle and Pentland 2006) and the PlaceLab (Chen
et al. 2006; LaMarca et al. 2005) research at Intel Research.
Additionally, other research projects have demonstrated the
utility of cellular tower data for a broad spectrum of appli-
cations ranging from contextual image tagging (Davis et al.
2004) to inferring the mobility of an individual (Sohn et al.

1Operators can also ’ping’ a phone to have it report back to
a nearby tower, however this requires additional power from the
phone and therefore typically is impractical for continuous location
tracking.



2006). Generally this logging software records between one
to four of the cellular towers with the highest signal strength,
however, recent research suggests it is possible to obtain up
to 2.5 meter accuracies if the number of detected towers is
dramatically increased (Otsason et al. 2005).

Human Movement Prediction Dynamic Bayesian Net-
works (DBNs) have been widely used for quantifying and
predicting human behavior. For analysis of human move-
ment, typically these models involve location coordinates
that are much more precise than cellular tower data, such
as GPS data. These models are trained on general human
movement (Ashbrook and Starner 2003) or more specific
data such as transportation routes (Liao et al. 2004).

Methods
Data Description
Our data was generated from the phones of 215 subjects
from a major urban city. After providing informed consent,
these subjects were given phones that logged the ID of the
four cellular towers with the strongest signal strength every
30 seconds. Additionally, the phones conducted Bluetooth
scans every minute. Bluetooth beacons were deployed in the
homes of each subject; as the beacons are detected only if the
phone is within 10 meters of the beacon, detection implies
the subject is at home. Additional data about the ambient
audio environment was also collected, but not used for this
analysis. The data was compressed on the mobile phone and
sent via GPRS back to a central server after each day.

One unique difference with this data, compared to similar
datasets reviewed above, is that every subject was randomly
sampled from a particular city. By offering a smartphone
and free service, over 80 percent of the randomly selected
individuals agreed to participate in the study. The demo-
graphic information we have about the subjects is evenly
distributed among ethnic groups and income levels, accu-
rately reflecting the distribution that makes up the city’s in-
habitants. No longer constrained to the study of behavior
of academics or researchers, our data represents an accurate
depiction of the behavior of inhabitants in a major urban city.

Segmentation via Community Structure
Because each phone records the four towers with the
strongest signal at 30 second intervals, this data can be repre-
sented as a cellular tower network (CTN) where each node
is a unique cellular tower, an edge is placed if two towers
ever co-occur in the same record, and each edge is anno-
tated with the total amount of time (over all records) the pair
co-occurred. A CTN is generated for each of the subjects,
which includes every tower logged by the phone during the
5-month period. The nodes in the CTN that have the high-
est total edge weight (the node’s “strength”) correspond to
the towers that are most often visible to the phone. Further,
a group of nodes with a large amount of weight within the
group, and less weight to other nodes, should correspond to
a “location” where the user spends a significant amount of
time. Figure 1 shows a 32-tower subgraph of one CTN, seg-
mented into five such locations.

Figure 1: A 32-tower subgraph of one of our cellular tower
networks, segmented into five “locations,” clusters of nodes
in which towers frequently coöccur in the phone’s records.

To allow for a meaningful comparison, we use three qual-
itatively different heuristics for clustering nodes into loca-
tions.
Ncut The first segmentation algorithm depends on Shi
and Malik’s normalized cut (Ncut) criterion (Shi and Malik
2000), which, like many cut criteria, is NP-hard to optimize.
Our implementation uses a spectral approach to find a bisec-
tion of the graph that minimizes the size of the normalized
cut. Applied recursively, a graph can be split into a specified
number of dense clusters. Although originally developed to
segment images, the Ncut method can naturally be applied
to networks.
Q-Modularity The second method, drawn from the large
literature on detecting “communities” in complex net-
works (Newman 2006), depends on Newman and Girvan’s
popular modularity measure Q (Newman and Girvan 2004),
which measures the density of clusters relative to a simple,
randomized null model.

Q =
m∑
s=1

[
ls
L
−
(
ds
2L

)2
]

(1)

where ls is the number of edges between the nodes within
cluster s, L is the total number of edges in the network, and
ds is the sum of degrees of the nodes in cluster s. While
finding the segmentation that maximizes Q is NP-complete,
there has been a significant amount of work towards this
goal. Although also NP-hard to maximize, we use Clauset et
al.’s greedy optimizer (Clauset, Newman, and Moore 2004),
which has been shown to perform reasonably well on real-
world data.
Threshold Groups The third method is a simple-minded
heuristic: we first identify the nodes in the upper decile
of “strength,” and then perform a breadth-first search on
the induced subgraph. Each connected component in this
subgraph is labeled as a unique location, and all remaining
nodes in the original graph placed in an additional group.



Although all based on somewhat similar principles, in
practice these methods produce dramatically different seg-
mentations of our CTNs. (This is in part because the first
algorithm requires as input the number of segments to be
found, unlike the other two.) One objective measure of these
clusterings is to use independent information derived from
the Bluetooth beacons.

Inference via Bluetooth Beacons
Bluetooth beacons have been installed in the homes of each
subject in the study. Every minute the phone scans for visi-
ble Bluetooth devices and if a beacon is within 10 meters of
the phone, it is logged as proximate. Creating training data
from the set of cellular towers detected at the same time as
the bluetooth beacons, we have used several methodologies
to infer if a subject is at home given a particular set of visible
cellular towers.

Bayesian Posteriors It is possible to calculate the poste-
rior probability a subject is home, P (Lhome), conditioned
on the four towers currently detected by the phone, Tabcd,
using the likelihood, the marginal and the prior probability
of being at home (based on the beacon data).

P (Lhome|Tabcd) =
P (Tabcd|Lhome)P (Lhome)

P (Tabcd)
(2)

Gaussian Processes While the naive Bayesian model
above works well in many cases, simply using the ratio of
tower counts co-present with the Bluetooth beacon tends to
fail if the phone regularly moves beyond ten meters of the
beacon while still staying inside the home. Instead of nor-
malizing by total number of times each tower is detected,
it is possible to obtain additional accuracy by incorporat-
ing the signal strengths from the detected towers. There are
many models for signal strength of a single cellular tower,
t. pt(st|l), one such model uses training data to estimate
Gaussian distributions over functions modeling signal prop-
agation from cellular towers (Schwaighofer et al. 2004). In
our case, the training data comes from the signals of towers
detected at the same time as the Bluetooth beacon in the sub-
ject’s home, and the inference is binary (home or not home);
however, these models are easily extendable for more broad
localization.

Deviations in Tower Signal Distributions The two mod-
els above generate a probability of being at home associ-
ated with a single sample of detected towers (ie: the four
tower IDs and their respective signal strengths). However,
during the times when a subject is stationary, the phone
continuously collects samples of the detected towers’ signal
strengths. These samples can form ’fingerprint’ distributions
of the expected signal strengths associated with that partic-
ular location. It is possible to detect deviations within these
distributions of signal strengths using a pairwise analysis of
variance (ANOVA) with the Bonferroni adjustment to cor-
rect for different sample sizes. Training the home distribu-
tions on the times when the beacon is visible (or if there are
no beacons, on times when the subject is likely home such as
2-4am), an ANOVA comparing this home distribution with

a distribution of recent tower signal strengths makes it pos-
sible to identify if the subject is truly at home, or is a next-
door neighbor’s house. In previous work, we have inferred
such tower probability density distributions for office-level
localization (Eagle and Pentland 2006).

Prediction via Dynamic Bayesian Networks
The clusters of towers identified above can be incorporated
as states of a dynamical model. Given a sequence of lo-
cations visited by a subject, we can learn patterns in their
behaviour and calculate the probability of them moving to
different future locations. We start with a baseline dynami-
cal model and introduce additional observed and latent vari-
ables in order to model the situation more accurately.

The simplest dynamical Bayesian network we can use for
location prediction is a Markov chain, in which the loca-
tion yt depends only on the location at the previous time
step, yt−1. The maximum likelihood transition probabilities
p(yt|yt−1) can easily be estimated. Given evidence that a
user is in a particular location at time t, this allows us to
calculate the τ -step-ahead prediction p(yt+τ |yt).

We note that patterns of movement in practice are depen-
dent on the time of day and the day of week. Subjects typi-
cally exhibit different dynamics on weekday mornings than
on Saturday evenings, for example. Figure 2(a) shows an
extended model where the probability of being in a loca-
tion is also dependent on the hour of day ht and the day of
week dt. In the experiments below, we code ht to take on
the values “morning”, “afternoon”, “evening” and “night”,
and code dt to take on the values “weekday” or “weekend”.
After learning maximum likelihood parameters we can cal-
culate the predicted density p(yt+τ |yt, dt+1:t+τ , ht+1:t+τ )
for new observations from the same user.

X-Factors for Abnormality Modeling
While there is strong structure in human behavior, there are
also regular deviations from the standard routines. We incor-
porate an additional latent variable into our model to quan-
tify the variation in behavior previously unaccounted for in
the fully observed models above.

The model we use for this is shown in Figure 2(b). Here
we factorize the location variable so that it depends on a hid-
den “abnormality” variable at. The model can now switch
between “normal” and “abnormal” behaviour depending on
whether at is 0 or 1 respectively.

We expect abnormal dynamics to be related to the normal
dynamics but with a broader distribution. When estimating
these dynamics, we therefore want to keep relevant structure
in the dynamics (e.g. transitions between physically neigh-
boring locations are still more likely), while allowing wider
possibilities including non-zero probability of transitions not
seen in the training data. We can achieve this effect by ty-
ing the parameters between the normal and abnormal tran-
sition probabilities such that p(yt|yt−1, dt, ht, at = 1) are a
smoothed version of p(yt|yt−1, dt, ht, at = 0). To smooth
the transition matrices for every combination of dt and ht
we add a small constant ξ to each entry in the matrix and
renormalize.



Figure 2: Two DBN models used for location prediction.
Shaded nodes are observed and unshaded nodes are latent;
yt denotes location, dt denotes day of week, ht denotes hour
of day, and at denotes abnormal behaviour (all at time t).
Panel (a) shows a fully observed model using contextual in-
formation, and panel (b) shows the X-factor model, where
location is additionally conditioned on the latent abnormal-
ity variable.

Learning of this model can be done with expectation-
maximization. We perform a standard E-step to calculate
the probability of being in the normal or abnormal regime
at each time frame, then modify the standard M-step to use
the parameter tying above. In the experiments below, we set
ξ = .1 by hand, though in principle this parameter can also
be learnt using EM. Increasing ξ effectively specifies that
a sequence has to depart further from normal dynamics in
order to be considered “abnormal”.
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Figure 3: Inferred points of abnormality using the X-Factor
model. Each weekday the subject moves consistently be-
tween home (location 31) and work (location 15), but on
the third day makes some extra, unusual journeys. The lo-
cations in this example were given by the local modularity
segmentation method.

method µNC
(σ) P (CBT ⊂ CH) NCBT

NCH

Ncuts 20 (0) .93 .0061
Q-Modularity 13.3 (11.7) .86 .18
Threshold Groups 6.8 (13.7) 1.0 .045

Table 1: Segmentation Validation via Bluetooth Beacons.
µNC

is the average number of clusters generated by each
segmentation method. P (CBT ⊂ CH) represents the prob-
ability that the set cellular towers associated the Bluetooth
beacon at the subject’s home, CBT , is fully contained in a
single cluster, CH . The last column corresponds to the ratio
of the actual number of home towers, NCBT

to the number
of home towers inferred by the different segmentation meth-
ods, NCH

. A small number corresponds to incorporating a
large number of towers within the home cluster.

Results & Discussion
Segmentation Validation
We have shown how data collected from installed Bluetooth
beacons can be used to create a known cluster of towers as-
sociated with each subject’s home. We used this known clus-
ter to validate each segmentation algorithm, selecting twenty
locations for the Ncuts technique. Table 1 categorizes the
community detecition algorithms by how well they detected
the “home” towers as defined by the Bluetooth beacons,
CBT . The home cluster of towers generated by the Thresh-
old Groups technique incorporated CBT for every subject,
P (CBT ⊂ CH) = 100%, while this was the case for the
Q-Modularity technique only 86% of the time. However,
the other important statistic is the ratio of the number of the
Bluetooth home towers, NCBT

, to the number of towers in
the inferred home cluster, NCH

. This ratio describes how
many “extra” towers were included in the inferred home lo-
cation; for example, the Q-Modularity home cluster has a
ratio of .18, indicating that its home cluster contains approx-
imately five times as many towers as needed. Despite aver-
aging the most number of clusters, the Ncuts home cluster
has a ratio of .0061, implying that a few large clusters tend
to dominate these segmentations.

Movement Prediction
The three DBNs described above were trained on sequences
of transitions between the locations that were inferred by
each segmentation method. To compensate for the bias to-
wards self-transitioning (at virtually every instance, the most
likely event will be that the subject does not change loca-
tions), we compare the models success only on instances
when a subject is about to transition between inferred lo-
cations. The DBNs are tasked with predicting the location
where the subject is about to move. Table2 lists these pre-
diction accuracies for the three segmentation methods and
the two full-observed Markov models. While the X-factor
model provides additional information about the the regular-
ity a particular behavior, its accuracy is identical to the con-
textualized Markov model and was not included in the table.
Of interest is that the highest accuracies did not come from
the segmentation methods that provided the largest cluster



Markov Contextualized
method Chain Markov Chain
Ncuts .932 .933
Q-Modularity .953 .954
Threshold Groups .992 .992

Table 2: Transition Accuracy. For every instance a subject
moves between two clusters of towers, the DBN can be used
to predict the subsequent cluster. The different accuracies
between the segmentation methods are due to not only how
well the clustering techniques performed at identifying the
true salient locations, but also to the number and size of the
clusters (described in Table 1). Given these high accuracies,
contextual conditioning does not appear to provide signifi-
cant improvement to the standard Markov model.

sizes (Ncuts), but rather with the smallest number of clusters
(Threshold Groups). However, a direct comparison between
these accuracies is not possible due to the differences in the
dimensionality of the state spaces. A model with fewer in-
ferred locations (NC) should be expected to do better be-
cause it has less potential for a wrong prediction. In the
extreme, a model with a single state will always be cor-
rect, yet obviously adds little value. Therefore, while the
Threshold Groups segmentation method, with an average of
6.8 inferred salient locations (σ = 13.7), generated accura-
cies of over 99%, future work in predicting location dwell
times may provide more conclusive information about the
dominance of one particular segmentation method over the
others. Given the extremely high accuracies using an uncon-
ditioned Markov model, incorporating information about the
time of day and day of the week unsurprisingly adds little
additional value.

Future Work
This paper has provided the groundwork for the design of in-
creasingly sophisticated models that incorporate additional
contextual and temporal variables and that can use demo-
graphic priors for bootstrapping. For example, if the dis-
covered Bluetooth devices can be clustered based on co-
presense, it may be possible to classify particular Bluetooth
phones as family, colleagues, and friends and incorporate
the proximity of these individuals as observational variables.
Additionally, the phones in this study also sample the ambi-
ent audio environmental periodically to detect the subjects’
media consumption, information that should also make for
an intriguing additional observed variable in the DBN. We
are also planning on expanding these models to incorporate
predicted dwell-times for locations. Lastly, we would like
to explore the potential of using demographic bootstrapping
to aid in efficient model parameterization as introduced in
similar models (Liao et al. 2004).

We have demonstrated the potential to repurpose algo-
rithms developed originally to quantify community structure
within graphs to idenitfy salient locations within a cellu-
lar tower network. We have validated these unsupervised
clustering algorithms on a known cluster of towers using the
Bluetooth beacon installed in each of our randomly sampled
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Figure 4: A sequence of transitions between clusters of tow-
ers corresponding to locations (top) and the average error
rates for predicted transitions (bottom). The X-factor model
was tested on approximately one month of movement seg-
mented using Ncuts into 20 locations. While the top inferred
location is 92% correct for this set of data, the subsequent
location is in the top four locations over 99% of the time.

subjects’ homes. The resultant set of inferred clusters of
towers correspond to salient locations and are incorporated
as states into our DBN models. We introduced the X-Factor
model to detect behaviors that deviate from a given routine
by incorporating an additional latent variable corresponding
a normal / abnormal switch. We hope that these character-
ization and prediction methods for cellular tower data will
contribute to the growing foundation that will support future
pervasive computing applications.
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