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Abstract 

The study of complex social systems has traditionally been an arduous process, involving 
extensive surveys, interviews, ethnographic studies, or analysis of online behavior. Today, 
however, it is possible to use the unprecedented amount of information generated by pervasive 
mobile phones to provide insights into the dynamics of both individual and group behavior. 
Information such as continuous proximity, location, communication and activity data, has been 
gathered from the phones of 100 human subjects at MIT. Systematic measurements from these 
100 people over the course of eight months have generated one of the largest datasets of 
continuous human behavior ever collected, representing over 300,000 hours of daily activity. In 
this thesis we describe how this data can be used to uncover regular rules and structure in 
behavior of both individuals and organizations, infer relationships between subjects, verify self-
report survey data, and study social network dynamics. By combining theoretical models with 
rich and systematic measurements, we show it is possible to gain insight into the underlying 
behavior of complex social systems. 
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Preamble 

We live in exciting times.  

While estimates differ, most agree that at this very moment there are at least one billion people 

who are carrying a mobile telephone, indeed, 1 out of 10 people on the planet bought a new 

phone last year. These 600+ million owners of brand new mobile phones did not make their 

purchase just for a single-use voice communication device. Text messaging, a seemingly 

insignificant feature originally designed to let GSM technicians test their networks, now suddenly 

represents a major fraction of many carriers’ revenues, with over 1 billion text messages sent each 

day. So for most people around the world, the mobile phone is the personal computer. Even 

today’s “free” phones offer a connection to the internet, a variety of input/output and 

communication options, and have more computational horsepower than my first desktop PC. And 

now that these platforms are becoming open for software programmers to develop additional 

applications, today’s phones have a functionality that is increasing at a seemingly faster and faster 

rate. The recent ubiquity of these mobile communication devices has launched us into a new era 

of wearable computing. 

Historically, ‘wearable computing’ has been discussed in the press using quotes. It pertained to 

the exotic notion of putting computers into backpacks or jackets, complete with flashing LEDs, 

and a heads-up display; it typically had strong connotations with words like ‘the Borg’, and 

generated plenty of quizzical stares when taken outside the confines of a research lab. We are 

now at the end of this first era of wearable computing. Today over a billion people dispersed 

around the globe can be connected to each other at virtually any time and in any place. As a 

society we are becoming conditioned to seeing people wearing wireless, ear-mounted 

transceivers, linking them via their personal area network to their mobile communication devices. 

It is hard to argue that wearable computing has not reached the masses.  

Mobile phones have been adopted faster than any technology in human history and now are 

available to the majority of people on Earth who earn more than $5 a day. Such an infrastructure 

of handheld communication devices is ripe for novel applications, especially considering their 

continual increase in processing power. This thesis will discuss some of the repercussions of 
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having a society that is now fully integrated with this pervasive infrastructure of wearable 

computers. 

One particular ramification of living in this new age of connectivity is related to data gathering in 

the social sciences. For almost a century social scientists have studied particular demographics 

through surveys or placing human observers in social environments such as the workplace or the 

school. Subsequently, the tools to analysis survey and observation data have become increasingly 

sophisticated. However, within the last decade, new methods of quantifying interaction and 

behavior between people have emerged that no longer require surveys or a human observer. The 

new resultant datasets are several orders of magnitude larger than anything before possible. 

Initially this data was limited to representing people’s online interactions and behavior, typically 

through analysis of email or instant messaging networks. 

However, social science is now at a critical point in its evolution as a discipline. The field is about 

to become inundated with massive amounts of data that is not just limited to human behavior in 

the online world; soon datasets on almost every aspect of human life will become available. And 

while social scientists have become quite good at working with sparse datasets involving discrete 

observations and surveys of several dozen subjects over a few months, the field is not prepared to 

deal with continuous behavioral data from thousands - and soon millions - of people. The old 

tools simply won’t scale. 

This thesis is inherently multidisciplinary. To deal with the massive amounts of continuous 

human behavioral data that will be available in the 21st century, it is going to be necessary to 

draw on a range of fields from traditional social network analysis to particle physics and 

statistical mechanics. We will be borrowing algorithms developed in the field of computer vision 

to predict an individual’s affiliations and future actions. Tools from the burgeoning discipline of 

complex network analysis will help us gain a better understanding of aggregate behavior. And it 

is my hope as an engineer that these new insights into our own behaviors will enable us to 

develop applications that better support both the individual and group. Indeed, by increasing our 

understanding of complex social systems, we can better inform the design of social structures 

such as organizations, cites, office buildings and schools to conform with how we, as an 

aggregate, actually behave, rather than how some CEO, architect, or city planner thinks we do 

[Ball (2004)].   
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Chapter 1 Introduction 

1.1 Trade-offs in traditional social data gathering 

For over a century social scientists have studied relatively small, cohesive social groups [Tönnies 

(1887), Cooley (1909)]. Interaction and relationship data collection began in earnest in the 1930s 

[Davis et al. (1941)], typically through surveys as well as by placing an observer in a particular 

social setting who continuously took notes on the behavior of the group. Figure 1a shows data 

collected from a human observer placed in the Western Electric Company who was studying the 

interaction patterns between twelve employees [Roethlisberger & Dickson (1939)]. This 

traditional method of conducting ethnographic research is still quite prevalent and captures rich 

sociological data yet is constrained to a limited number of subjects simply due to its time-

consuming nature.  However a new method of collecting data on social systems has emerged with 

the prevalence of the internet. Today, physicists such as Lada Adamic can now automatically 

collect large-scale social network datasets from digital information such as email, represented in 

Figure 1b [Adamic & Huberman (2003)]. These networks represent a large number of people and 

have a variety of interesting properties, yet the rich interpersonal relationship information that 

was traditionally collected by the human observer has been lost. 

 

                  Fig 1a. Rich Interaction Data (1935)          Fig 1b. Sparse Email Data (2003) 

Figure 1. The evolution of social network analysis.  Figure 1a. was generated from the rich, low-level 
relationship data collected by an observer watching the interactions among twelve employees in the 
Western Electric Company in 1935.  Figure 1b is a representation of the social network of hundreds 
of Hewlett Packard employees collected from sparse email data in 2003.  
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Dealing with the inherent tradeoffs between traditional ethnographic and today’s internet-enabled 

social network data has spawned attempts to generate both rich and large-scale data.  Agent-based 

models have been proposed as a solution to this problem of dearth of data and detail by 

simulating people’s behavior in groups using simple rules. However, this has been seen not only 

as an oversimplification of human behavior, but also, in many instances, as completely wrong. 

The latest models of gossip dissemination across an organization of agents make the assumption 

that the agents move with Brownian motion – an assumption that almost all people could 

recognize as spurious [Moreno et al. (2004)]. 

The limitations of these methods can be seen as the rationale behind why social scientists, unlike 

almost any other type of scientist, are still conducting analysis and publishing papers on datasets 

collected well over fifty years ago [Freeman (2003)]. The massive technical breakthroughs over 

the past few decades that have revolutionized virtually every other science have yet to 

dramatically impact social science.  The data collected by the human observer on the behavior of 

those twelve workers back in 1935 are still some of the best data a social network analyst can get 

today. However, we are beginning to enter another era of technical breakthrough – a 

breakthrough that will manifest itself by outfitting each employee in tomorrow’s electric 

company with his own personal “observer” that tirelessly logs everything he does. Sociologists 

are now becoming aware of the possibility that the data collected by the human observer of 1935 

could now be collected by today’s pervasive mobile phone. 

This new era of mobile communication technology has had truly global ramifications. More than 

six hundred million mobile phones were sold during 2004, six times as many as the number of 

personal computers sold that year [Wood (2004)] – or one new phone for every ten people on 

Earth. Mobile phones are now available to the majority of people who earn more than $5 a day, 

making them the fastest technology adoption in mankind’s history. And the potential 

functionality of this ubiquitous infrastructure of mobile devices is dramatically increasing. Many 

of these phones currently have a processor equivalent in power to the ones in our desktop 

computers just a decade ago. No longer constrained to simply placing and receiving voice calls, 

or even simple calendar and address book applications, the possibilities are staggering now that 

hundreds of millions of people are carrying pocket-sized, networked computers throughout their 

daily lives.  
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1.2 New Instruments for Behavioral Data Collection 

With the rapid technology adoption of mobile phones comes an opportunity to unobtrusively 

collect continuous data on human behavior [Himberg (2001), Mäntyjärvi (2004)]. The very nature 

of mobile phones makes them an ideal vehicle to study both individuals and organizations: people 

habitually carry a mobile phone with them and use them as a medium through which to do much 

of their communication.  Now that handset manufacturers are opening their platforms to 

developers, standard mobile phones can be harnessed as networked wearable sensors. The 

information available from today’s phones includes the user’s location (cell tower ID), people 

nearby (repeated Bluetooth scans), communication (call and SMS logs), as well as application 

usage and phone status (idle, charging, etc). However, because the phones themselves are 

networked, their functionality transcends merely a logging device that augments social surveys. 

Rather phones can begin to be used as a means of social network intervention – supplying 

introductions between two proximate people who don’t know each other, but probably should. 

Research is being pursued to develop a new infrastructure of devices that not only are aware of 

each other, but also are infused with a sense of social curiosity. Work is ongoing to create devices 

that attempt to figure out what is being said, and even to infer the type relationship between the 

two people. The mobile devices of tomorrow will see what the user sees, hear what the user hears, 

and learn patterns in the user’s behavior. This will enable them to make inferences regarding 

whom the user knows, whom the user likes, and even what the user may do next. Although a 

significant amount of sensors and machine perception are required, it will only be a matter of a 

few years before this functionality will be realized on standard mobile phones. 

1.3 Contributions 

The thesis makes four principal contributions: 

Contribution 1: Mobile Phones as a Data Gathering Instrument. We have developed and 

deployed a wearable sensor system consisting entirely of standard mobile phones that 

automatically perceive and quantify the dynamics of human behavior. In this thesis we show that 

mobile phones can be used to gather daily behavioral data from human subjects and complement 

traditional social-science data-collection instruments, such as self-report surveys. 
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Contribution 2: The Dataset. We have generated a dataset consisting of approximately 300,000 

hours of daily behavior of 100 co-located people over the course of 9 months. This data contains 

logs of location, social proximity, communication, and phone application usage for each subject 

in the study. The dataset, along with code for processing it, will be cleaned of any information 

relating to the identities of the subjects and be made available to the general academic 

community. 

Contribution 3: Modeling. We use data collected from the mobile phones to uncover regular 

and predictable rules and structure in behavior of both individuals, dyads, teams and 

organizations. We have developed discriminative and generative probabilistic graphical models, 

as well as models based on eigendecomposition, to classify and predict an individual’s behavior, 

relationship with others, as well as affiliation to specific groups. We show applications for such 

models and demonstrate how they are able to scale to aggregate behavior of teams and 

organizations.  

Contribution 4: Intervention. We have designed an intervention to influence directly social 

networks in ways informed by the models. We introduce Serendipity, a centralized system for 

delivering picture message introductions to proximate individuals who don’t know each other, but 

probably should. 

1.4 Thesis Roadmap 

The content of this thesis is grouped into eight chapters. We will initially provide background on 

related work and then introduce the Reality Mining experiment. Subsequently we describe 

applications for this data and introduce several different models for its analysis. Finally we 

conclude by showing how the system can be used for social network intervention.  

Chapter 1 Introduction: We give a brief overview of traditional social science datasets and 

introduce a new method of collecting similar data using mobile phones. We overview the main 

contributions of this thesis and briefly outline the content in the subsequent chapters. 

Chapter 2 Background: An overview of the several related fields is presented including 

complex social systems, complex networks, social proximity sensing, social software, and 
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behavioral social science. In each section, we discuss how the work in this thesis relates to the 

specific field. 

Chapter 3 Methodology & Research Design: This chapter details the experimental design 

including human subjects approval, participant recruitment, and the custom logging software. It 

then discusses the procedure and data collection techniques, concluding with a section on data 

validation and characterization.  

Chapter 4 Sensing Complex Social Systems: We show that from our data on a user’s context it 

is possible to quantify which applications (Camera, Calendar, etc) are most popular given a 

specific situation (at home, at work, etc). When the data is combined with surveys, we find that 

while self-report information from senior students about their proximity patterns accurately 

reflects their actual behavior, correlations between proximity information and self-report surveys 

are surprisingly low for incoming students. Senior students’ satisfaction with their research 

groups is shown to be strongly correlated with how often they are proximate to their friends 

(while satisfaction has a slight inverse correlation with proximity to friends for incoming 

students), which points to the importance of cohesiveness within established research teams. An 

alternate method of representing the structure inherent in a complex social system is with 

dynamic networks.  We show how it is possible to gauge the evolution of an incoming student’s 

social network by analyzing communication activity. When the dynamics of a network topology 

are traditionally quantified, they are aggregated into a discrete sequence of static network ‘snap-

shots,’ where network parameters are measured for each sample in the sequence. However, using 

our high-resolution temporal proximity data, we show that the measured network parameters are a 

function of the rate at which the network is sampled. We introduce a similarity metric for 

dynamic topologies and demonstrate its usefulness in understanding dynamic structures. 

Chapter 5 Illustrative Models and Applications: We demonstrate how more sophisticated 

models can be applied for a variety of illustrative example applications. We begin by focusing on 

the individual, and introduce both the concept of the ‘entropy of life’ and a conditioned hidden 

Markov model as a means of behavior parameterization and prediction. Both an automatic diary 

and conversation topic-spotter are subsequently described as applications for the output of these 

models. Using statistics generated from proximity patterns and communication activity, we show 

that it is possible to infer the nature of the relationship between subjects. Moving from individuals 
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and dyads to teams and organizations, we compare the proximity patterns between different 

research groups and quantify how the aggregate behavior of the organization reacts to external 

stimuli such as a deadline.   

Chapter 6 Eigenbehaviors: In this chapter we shift from the traditional probabilistic models 

introduced in Chapter 5, to ones based on eigendecompositions of large amounts of behavioral 

data. We show that it is possible to accurately cluster, analyze, and predict multimodal data from 

individuals and groups. By reducing the original, high-dimensional data down to its principal 

components, we can accurately model many people’s lives with just a few parameters. This can 

predict future behavior from limited observations of their current behavior – as well as establish a 

similarity metric between individuals and groups to identify group affiliation and behavioral 

“style”. We conclude with a discussion of the potential ramifications of eigenbehaviors to the 

field of Ubiquitous Computing. 

Chapter 7 Intervention: Social Serendipity: We show in the previous chapter that is possible to 

identify how a network needs to change to meet some overall goal, and in this chapter we 

describe an intervention technique to instigate these changes on a real social network. The 

Serendipity system cues informal interactions between nearby users who are unacquainted with 

one another. The system uses Bluetooth hardware addresses to detect and identify proximate 

people and matches them from a database of user profiles. We show how inferred information 

from the mobile phone can augment existing profiles, and we present a novel architecture for 

instigating face-to-face interaction designed to meet varying levels of privacy requirements. 

Finally, we discuss features that respond to experience in an on-going user study. 

Chapter 8 Conclusions: The thesis is concluded with a discussion of the current direction this 

technology may be taking society (and vice versa). We theorize potential ramifications of this 

type of data on a variety of academic disciplines and speculate on how the research will evolve in 

response to changing privacy concerns of the general population. 
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Chapter 2 Background 

Technology-driven societal change is a hallmark of our era; this new infrastructure of networked 

mobile devices is influencing culture in ways that are unplanned and unprecedented. For example 

SMS text messaging now generates a significant fraction of most service providers’ revenue, yet 

it is a protocol originally developed by cellular network operators as a way for their service 

technicians to test the network. It was released to the public almost by chance. While it has only 

recently been possible to send text messages from U.S. carriers, the rest of the world has quickly 

embraced the technology, sending more than 1 billion text messages each day [ezmsg.com 

(2003)].  Another wireless protocol is on the verge of making a similar explosion into our lives. 

Although hyped for sometime, “Bluetooth” is finally seeing mass-market adoption in mobile 

electronics - currently over three million Bluetooth devices are sold each week [bluetooth.com 

(2004)]. Bluetooth is designed to enable wireless headsets or laptops to connect to phones, but a 

byproduct is that Bluetooth devices are becoming aware of other Bluetooth devices carried by 

people nearby. It is “accidental” functionalities such as these that will drive the next computing 

revolution not in traditional computing environments, but rather in social settings: the bus stop, a 

coffee house, the bar, or a conference.  

Likewise, this latest technical breakthrough will have both a dramatic impact on everyday 

people’s lives, but also on the academic communities that study them. These academics range 

from physicists interested in modeling large groups of people using statistical mechanics, to 

sociologists looking to quantify the evolution of social networks, to computer scientists 

attempting to teach computers common-sense facts about human life, to social psychologists 

studying organizational and team behavior, to epidemiologists modeling how a contagion 

disseminates across a proximity network. The proliferation of smartphones will have such an 

impact on such a wide range of academic disciplines that it is difficult to provide a 

comprehensive background on every field. Below is an attempt to summarize a selection of fields 

that will benefit from the unique dataset that can come from today’s mobile phones. 
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2.1 Complex Social Systems 

Attempting to understand and model the complex collective behavior of organizations and 

societies made up of idiosyncratic individuals is certainly a daunting task. Physicists have 

recently been quick to jump on the problem with their own set of tools, applying techniques such 

as statistical mechanics to ignore the micro-behavior of a system (i.e., the speed of each 

individual particle in a balloon or individual in society), and rather provide guidelines for the 

behavior of the aggregate (i.e, the air pressure in the balloon or the current cultural fad). Even in 

the early 70s, physicists began successfully mapping human movement in groups to Maxwell-

Boltzmann kinetic theory of particle movement in gases [Henderson (1971)]. Today’s physicists 

are now taking on much larger social phenomena: decision making, contagion dissemination, the 

formation of alliances and organizations, as well as a wide range of other collective behavior 

[Newman (2001), Adamic & Huberman (2003), Richardson & Domingos (2002), Albert & 

Barabasi (2002), Watts & Strogatz (1998), Eubank et al. (2004)]. 

2.2 Complex Networks 

Complex network topologies have received attention from a wide variety of fields in recent years 

[Newman (2003), Albert et al. (2002), Dorogovtsev & Mendes (2002)]. For example, the cell is 

now well described as a network of chemicals connected by chemical reactions; the Internet is a 

network of routers and computers linked by many physical or wireless links; culture and ideas 

spread on social networks, whose nodes are human beings and whose edges represent various 

social relationships; the World Wide Web is an enormous network of Web pages connected by 

hyperlinks.  

Many new concepts and measures have been recently proposed and investigated to characterize 

such systems. We define and briefly discuss three of the most important concepts: 

Small Worlds. The small world concept describes the fact that in most networks there is a 

relatively short path between any two nodes, even if the number of nodes is large. The distance 

between two nodes is defined as the number of edges along the shortest path connecting them. 

The best known example of small worlds is the “six degrees of separation” found by the social 

psychologist Stanley Milgram, who showed that there is an average number of six acquaintances 
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between most pairs of people in the United States [Milgram (1967)]. The small world property 

can be observed in most complex networks: the actors in Hollywood are on average within three 

costars from each other, or the chemicals in a cell are typically separated by three reactions. The 

small world concept, however, is not an indication of any organizing principle. Erdos and Renyi 

demonstrated that the typical distance between any two nodes in a random graph scales as the 

logarithm of the number of nodes ( )lnd N∝ . Thus, even random graphs are small worlds. 

Clustering. A common property of social networks are cliques, circles of friends or 

acquaintances in which every member knows every other member. This inherent tendency to 

cluster is quantified by the clustering coefficient [Watts and Strogatz (1998)]. Consider a selected 

node i in a network, having ik  edges connected to ik  other nodes. If the first neighbors of the 

original node were all connected, there would be ik  ( ik - 1)/2 edges between them. The ratio 

between the number of edges that actually exist between these ik  nodes, iE , and the maximum 

number, ik  ( ik - 1)/2, gives the value of the clustering coefficient of node i  

2
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A network’s clustering coefficient is the average clustering coefficient of its nodes. In a random 

graph, since the edges are distributed randomly, the clustering coefficient is C p= , where p  is 

the probability of a link existing between any pair of nodes. However, Watts and Strogatz pointed 

out that in most real networks the clustering coefficient is typically much larger than it is in a 

random network of equal number of nodes and edges [Watts & Strogatz (1998)]. 

Degree distribution. Nodes in a network typically do not all have the same number of links, or 

degree. This variation can be characterized by a distribution function ( )P k , which gives the 

probability that a randomly selected node has exactly k  links. Since in a random graph the links 

are placed randomly, the majority of nodes have approximately the same degree, close to the 

average degree k of the network. The degree distribution of a random graph is a Poisson 

distribution with a peak at ( )P k . However, recent empirical results show that the degree 

distributions of most large networks are quite different from a Poisson distribution. In particular, 

for a large number of networks, including the World Wide Web [Albert et al. (1999)], the internet 
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[Faloutsos et al. (1999)], and metabolic networks [Jeong et al. (2000)], the degree distribution has 

a power law tail.  

( )P k k γ−∼    2-2 

Such networks are called scale free. While some networks display an exponential tail, often the 

functional form of ( )P k  still deviates significantly from the Poisson distribution expected for a 

random graph.  

The discovery of the power law degree distribution has led to the construction of various scale-

free models that, by focusing on the network dynamics, aim to explain the origin of the power 

law tails and other non-Poisson degree distributions seen in real systems. The work listed above 

assumes a static network topology; however, complex networks in reality are continuously 

changing over time. We will attempt to parameterize the dynamics in complex networks and 

identify patterns recurring in the topology of real world networks. 

2.3 Social Proximity Sensing 

As computation and communication technologies have become mobile, it is possible to repurpose 

them for alternate applications. The projects reviewed in this section are primarily custom 

prototypes that have remained within the realm of research, or in some cases, commercial 

products that have not seen significant adoption. However, while it is initially hard to make a case 

for considerable investment in the development and deployment of wearable sensors, by 

leveraging new mobile communication infrastructure and hardware we claim that the vision of 

these previous researchers can now be realized for the general population. 

2.3.1 Technology Overview 

Human proximity sensing systems are traditionally associated with a machine-human interface 

incorporating technologies such as IR motion sensors or machine vision. However, such sensing 

systems can only function in a fixed or limited area. In contrast, social proximity sensing has 

almost always involved wearable devices that can detect other proximate people. Over the last 

decade there have been many instantiations of social proximity sensing, from badges to keychain 
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electronics. In 1998 Erfolg launched the Lovegety in Japan, consisting of a low-cost keychain-

sized device intended for dating, and using radio frequency (RF) transmission to communicate to 

other devices within 5 meters. While the Lovegety lacked a user profile, it did allow the user to 

choose one of three modes that represented their current ‘mood.’  If the device detected another 

user of the opposite gender who had a matching mood, both devices would begin to flash and 

beep. Gaydar, a similar product specifically targeted for the gay community, was launched soon 

afterwards in the United States. There are a variety of other applications that use pocketsize 

proximity detectors including:  

Cell Tower / SMS Locators. Several wireless service providers now offer location-based 

services to mobile phone subscribers using celltower IDs. Users of services such as 

Dodgeball.com can expose their location to other friends by explicitly naming their location using 

SMS. 

Social Net. Social Net is a project using RF-based devices (the Cybiko) to learn proximity 

patterns between people. When coupled with explicit information about a social network, the 

device is able to inform a mutual friend of two proximate people that an introduction may be 

appropriate [Terry et al. (2002)]. 

Hummingbird. The Hummingbird is a custom, mobile RF device developed to alert people in 

the same location in order to support collaboration and augment forms of traditional office 

communication mediums such as instant messaging and email [Holmquist et al. (1999)]. 

Jabberwocky. Jabberwocky is a mobile phone application that performs repeated Bluetooth 

scans to develop a sense of an urban landscape. It was designed not as an introduction system, but 

rather to promote a sense of urban community [Paulos & Goodman (2004)]. 

Although primarily used for location-based applications, electronic badges can also sense social 

proximity. The exposed manner in which they are worn allows line-of-sight sensors, such as 

infrared (IR), to detect face-to-face interactions. Some of the earlier badge work to sense human 

behavior was done in the 80s and early 90s at EUROPARC and Olivetti Labs [Lamming et al. 

(1992), Want et al. (1992)]. GroupWear, a system developed by Richard Borovoy et al. at the 

MIT Media Lab, introduced electronic nametags intended for facilitating meeting new people at 

large public events, such as conferences [Borovoy et al. (1998)]. The nametags used infrared (IR) 
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to determine whether two people were facing each other. When badges were within range they 

displayed an indicator representing the common elements of the two user profiles. Lieberman et 

al. extended these profiles to incorporate keywords from people’s homepages and used this 

information to make webpage recommendations when multiple users approached a public 

terminal [Lieberman et al. (1999)].  Below is a sampling of other examples of proximity-sensing 

badges. 

The ActiveBadge / ParcTab / Bat.   Initially developed over fifteen years ago as a technology to 

enable telephone systems to route calls to an individual’s current location, there have now been 

many experiments tracking people at the office place using electronic badges.  Recent 

developments in ultrasound tracking have greatly improved the ability to localize the badge, 

enabling a wide range of just-in-time information applications [Want et al. (1992), Schilit et al. 

(1993), Addlesee et al. (2001)]. 

Sociometer. The sociometer is a wearable computer that can accurately infer a person’s 

interactions with others in face-to-face conversations, allowing inference of social influence and 

status [Choudhury (2004)].  

nTag. One of the pioneers in the commercial electronic badges market, nTag designed a badge to 

improve networking of event participants. Profiles of the participants are transmitted from a PC 

over IR to the badge. When two badges are aligned with one another, text on the badges can 

provide introductions and display items the participants have in common. For additional 

functionality, the badges can also be enabled with radio frequency identification (RFID). The 

nTag technology is derived from Rick Borovy’s doctoral research [Borovoy et al. (1998)]. 

IntelliBadge. IntelliBadge uses RFID to capture the location of participants. Because the devices 

have no visible output, public displays are used to support a variety of applications including 

traffic monitoring between conference halls and determining how far a participant has walked 

during the conference [Cox et al. (2003)]. 

SpotMe. SpotMe is not a traditional badge, but rather a small Linux-based device that uses short-

range RF to communicate with similar devices in order to provide services such as introductions, 

information about other conference participants, and searches for specific individuals. 
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Ubicomp Experience Project. Using inexpensive RFIDs with traditional conference badges, the 

Ubicomp Experience Project was able to link profiles describing many of the conference 

participants with their actual locations. When users approached a tag reader and display, relevant 

‘talking points’ would appear on the screen [McCarthy et al. (2003)]. 

2.3.2 Reality Mining as a Proximity Sensing Technology 

The work described in this thesis draws on many of the ideas introduced by the projects reviewed 

above. Similar to the Jabberwocky project, we rely on repeated Bluetooth scans to get a sense of a 

user’s social environment. When deployed in an office setting, we have envisioned similar 

applications as described over 15 years previously in the early ActiveBadge / ParcTab work. 

Additionally, many of these early proximity-sensing projects have been framed as early 

introduction technologies for a variety of environments ranging from dating, to the workplace, to 

conferences; our work is no exception, with the Serendipity system described in Chapter 7. 

Despite drawing extensively on previous work from the Ubiquitous Computing field, one of the 

contributions of this thesis is to show the potential for these ideas to scale. We have developed a 

system that can be run on tens of millions of devices already deployed around the world. We have 

shown that this system has the potential to generate an unprecedented amount of data and provide 

millions of people who are well outside the realm of research with services they find useful.  

2.4 Social Software 

Although we are empowered by desktop and handheld computers, mobile phones, and soon even 

wearable computers in eyeglasses, these innovations empower only the individual.  In contrast, 

social software augments and mediates a user’s social and collaborative abilities [Coates (2003)] 

and has its roots in the early online dating and knowledge management (KM) of the mid-90s. In 

some respects, a word processor that enables a team of individuals to write and edit a document is 

a form of social software, but more recent applications are able to take greater advantage of 

collaboration. One such example is web sites such as www.match.com or www.linkedin.com that 

were developed to enable people to find others who, for instance, have common interests.  At the 

same time knowledge management applications emerged, attempting to identify experts and 

quantify the tacit knowledge in an organization.  
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Such technology also has valuable business benefits. Consider a salesperson that needs an 

introduction to an executive working for a prospective customer. Companies like Visible Path 

have been developing software that automatically finds such connections, using the “six degrees 

of separation” principle. The technology might analyze the emails, electronic address books and 

Web browsing patterns of employees to uncover not only the shortest but also the strongest path 

between two people. Obviously, the technology raises a number of privacy concerns, but various 

safeguards can help to minimize them. For example, an “opt-in” methodology could ensure that 

no sensitive information about a user is released without her consent. Additionally, intermediaries 

(that is, people who could potentially link one person to another) could remain completely 

anonymous unless, and until, they explicitly grant their approval for initiating an introduction. 

Today, knowledge management has turned into a $7 billion dollar industry [Gilmour (2003)], 

while online dating is the most lucrative form of legal, paid online content. Over 40 million 

Americans browsed online personal ads during the month of August 2003 [Egan (2003)], creating 

another example of rapid technology adoption by individual users with immediate ramifications 

on our culture and society. Table 1 shows a sample of the numerous applications that allow users 

to create their own profiles and publicize their social circle.  

Application Example 

Business Networking LinkedIn, Ryze  

Knowledge Management Tacit ActiveNet, Lotus KDS,  

Research systems  SHOCK, ReferralWeb,  

Customer Relationship Management  Siebel, Peoplesoft, Oracle 

Dating - Online Personals Match, Yahoo Personals, Udate, Spring Street 

Social Interests MeetUp, Friendster, mySpace, Tribe, Orkut 

Table 1. Types of Social Software that are used as Introduction Systems. Social software has a wide 
range of applications, from business and knowledge management to dating.  

2.4.1 The Opportunity for Mobile Social Software 

The majority of these millions of profiles are not typically accessed in social environments, but 

rather in front of a personal computer. Despite the growing ubiquity of mobile telephony, few 
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researchers have explored ways in which the handsets might be used as a means to foster informal 

face-to-face communications by leveraging the vast amount of information stored in today’s 

social software profiles. Whether it is for matchmaking at a bar, or introducing two co-located 

colleagues who have little, if any, acquaintance to one another, there is an obvious need to bring 

information from social software databases into the places it is most useful – social environments. 

This is the primary contribution of the thesis to the field of social software. 

2.5 Shortcomings in Social Science 

While the existing research on team networks offers useful insights into the impact of ties on 

performance, it suffers from some critical missing pieces.  Most notable is the reliance on self-

report network data, the absence of extensive longitudinal data, and the necessity to limit the size 

of the study due to the time-consuming and burdensome nature of the data collection.  

2.5.1 Reliance on Self-Report Measures 

A series of early studies comparing self-report and observational data found surprisingly large 

divergences between the two [Bernard et al. (1977), Bernard et al. (1985), Marsden (1990)].  

Since these early studies, researchers have relied almost exclusively on self-reports of network 

ties.  Some researchers have argued that observational data capture only snapshots of interaction, 

while self-report data provide a truer picture of the long-term social structure [Freeman et al. 

(1987)].  It is certainly true that self-reported interactions are behaviors mediated by beliefs about 

what constitutes a relationship, ability to recall interactions, how memorable certain people are, 

etc.  These beliefs and recollections about one’s relationships may have a considerable impact on 

certain outcomes.  In fact, in the extreme, there are some relationships that exist only as a belief 

(e.g., unrequited love).  Surveys will thus always remain an essential measurement instrument in 

social network analysis. However, it is indisputable that, in many circumstances, actual behavior 

has an effect independent of people’s beliefs and recollections about that behavior. 

Relatively little work has been done to parse the relationship between behavior and beliefs 

regarding networks, and much of social network research, especially in the organizational realm, 

is written as if self-report data are behavioral data.  
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2.5.2 Absence of Longitudinal Data 

Longitudinal data are essential to discriminating between cause and effect in social networks.  

Consider the positive findings of a relationship between a team’s internal ties and its 

performance.  What do these findings really mean?  Do ties lead to team success?  Or does team 

success lead to ties?  To answer these questions, it is crucial to collect network data that are 

causally antecedent to the outcome that is hypothesized to have been determined by them. There 

are two ways to do this: collect temporally antecedent data, or use some instrument for measuring 

the network (e.g. spatial propinquity, [Festinger et al. (1950)]) for which there could be no 

reciprocal effects. Network data is typically collected after teams and individuals have produced 

outputs (and received feedback), making it impossible to say whether these findings are the result 

of (1) ties leading to success or (2) success leading to ties. 

This lack of clarity is exacerbated by the fact that existing field studies cannot distinguish 

between the impact of ties at different stages.  In understanding the causal relationships between 

ties and team performance, three stages must be considered: a) the ties that exist before the team 

is formed; b) the ties while the team does its work and how they interplay with team functioning 

and output; and c) the ties once the team has concluded functioning.   

Evidence suggests that pre-existing ties may influence communication ties during the team’s task.  

In a laboratory experiment, Jehn and Shah (1997) found differences in the amount of self-

reported intra-team communication when they compared teams composed of friends to teams 

composed of acquaintances. Furthermore, it is possible that pre-existing ties could have an impact 

on team effectiveness independent of the ties established during the team’s life.  In other words, it 

may be that pre-existing ties affect team functioning over and above the impact of ties established 

during the team’s life.  We know that network ties tend to have some durability [Newcomb 

(1961)], and it seems likely the pattern of pre-existing ties will be correlated with the pattern of 

ties established during the team’s life.  This could have implications for task accomplishment; 

people might communicate most with those teammates they already know, even if the task 

demands that they talk mostly with teammates they do not already know.  Indeed, Gruenfeld et al. 

(1996) conducted a laboratory experiment where they compared teams composed of three 

familiars, two familiars and one stranger, or three strangers.  Pre-existing ties affected the extent 

to which team members shared their unique information. 
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Most of the research on the relationship between team ties and team outcomes looks at ties during 

the team’s life (after the launch and before the conclusion of the team).  However, since ties are 

dynamic and the patterns of collaboration and communication among teammates likely to evolve 

over time, there is a significant possibility of a feedback loop between team ties and interim 

outcomes.  One possibility is that early success results in increased communication, creating a 

positive spiral [Hackman (1987), Hackman (1990)].  This is consistent with prior research 

indicating that a team’s success or failure can influence subsequent feelings of cohesiveness 

among teammates [Turner et al. (1984)].  A related possibility is that misery could breed 

company.  In other words, poor performance could foster ties.  Another alternative is that poor 

performance could kick off a vicious cycle, with early failure leading to a drop in communication, 

leading in turn to more failure [Lindsley et al.(1995)]. 

Furthermore, we suspect that the timing of team interactions could be important.  A study that 

simply asks team members “Who have you communicated with among your teammates?” or 

“Who have you worked with?” (two standard approaches to measuring team ties) does not 

distinguish among interactions that occurred early versus late in the team’s life.  Yet there is a 

substantial difference, for example, between intense early interactions that set expectations, 

determine roles, develop an understanding regarding who knows what, and so on, and late 

interactions that deal with crises that occur because the team did not establish clear norms at the 

outset [Hollingshead et al. (1993)]. 

As Hinds et al. (2000) report, having worked with a particular colleague increases the likelihood 

of working with him again.  Thus a positive team outcome might lead to an increase in post-team 

collaborative ties.  The implication here is that ties among teammates may affect not just the 

outcome of the immediate team task, but the ongoing social capital of the organization overall.   

2.5.3 Study of macro-networks 

The reliance on self-reports also presents a practical problem:  thorough network data are time-

consuming and burdensome for respondents to report.  This limits the size of social systems that 

can be studied with self-report data, as well as the number of observations over time that can be 

collected.  (For a system of size N, where one collects P observations of interactions, the number 

of sociometric questions each respondent needs to reply to is (N-1) x P.)  Given the need to 
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maintain exceptionally high response rates for social network research, most social network 

research is thus limited to a single observation of relatively small systems. This is beginning to 

change with the development of electronic devices to measure interaction automatically [Adamic 

& Huberman (2003)] however, social network analysis has largely been limited to sharply 

bounded groups. In contrast, while we have only 100 subjects, our only constraint is the number 

of phones we have available. 
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Chapter 3 Methodology & Research Design 

As far as we know, the Reality Mining project represents the largest mobile phone experiment 

attempted in academia to date. Our study consists of one hundred Nokia 6600 smart phones pre-

installed with several pieces of software we have developed as well as a version of the Context 

application from the University of Helsinki [Raento et al. (2005)]. Seventy-five users are either 

students or faculty in the MIT Media Laboratory, while the remaining twenty-five are incoming 

students at the MIT Sloan business school adjacent to the laboratory. Of the seventy-five users at 

the Media Lab, twenty are incoming master’s students and five are incoming MIT freshman. The 

information we are collecting includes call logs, Bluetooth devices in proximity, cell tower IDs, 

application usage, and phone status (such as charging and idle), which comes primarily from the 

Context application. The study has generated data collected by one hundred human subjects over 

the course of nine months and represents over 300,000 hours of data on users’ location, 

communication, and device usage behavior.  Upon completion of the study, we plan to release a 

public, anonymous version of the dataset for other researchers to use. 

3.1 Human Subjects Approval 

As will be discussed in subsequent sections, this project raises many privacy concerns for both 

the participants and the IRB. To receive Human Subjects Approval, the researchers needed to 

explicitly describe each type of data collected from both participants and non-participants. We 

made it clear that participants have the option to delete any data they are not comfortable 

submitting to the study, as well as the ability to disable the logging application at their discretion. 

Particular emphasis was placed on the data captured from people who were not participants in the 

study. This data includes the Bluetooth hardware addresses, as well as phone numbers logged by 

the subjects. We made the point that the Bluetooth hardware address is an anonymous 

identification number that does not provide any information about the identity of an individual. 

However, this argument does not hold for the communication logs, which include the phone 

numbers and (if available) the individuals’ names from the phone’s address book. To be able to 

capture this data we used the precedent of ongoing email studies within academia. Similar to call 

logs, email headers provide the identity and contact information of individuals not in the study. 

As with the email studies, we made the point that these phone logs were the property of the 
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participants in the study, and were submitted with their approval. To ensure additional security, 

we performed a one-way (MD5) hash on all of the phone numbers that turned each number into a 

unique ID; and made it impossible to get back to the original number. By removing any 

identifiable information within the dataset, we were allowed to share the dataset with other 

researchers outside the immediate scope of this project. 

3.2 Participants 

Because we are relying on repeated Bluetooth scans to detect other subjects within 10 meters, 

adequate density of subjects is critical. We chose two demographics for the study: students, 

faculty, and staff who all work in the same building (the MIT Media Lab), and two working 

groups of incoming Sloan business school students. Because of budget constraints, we were 

unable to pay for the actual phone service of our subjects, or compensate the subjects monetarily; 

rather, we offered the use of a new $400 Nokia 6600 smartphone, at the time only available in 

Finland, for the duration of the academic year (generously donated by Nokia). The Nokia 6600 is 

a GSM phone that is compatible only with select American service providers including T-mobile, 

AT&T, and Cingular Wireless. This precluded potential subjects who were already in service 

contracts with alternate providers (such as Sprint or Verizon) from participating. Our study also 

incorporated six additional students who had compatible phones and volunteered to participate in 

the experiment for no additional compensation. 

3.2.1 Recruitment 

A secondary requirement to density of the subjects was the desire to maximize the number of 

incoming students. To this end, we posted an overview of the opportunity to the incoming Media 

Lab student email list at the end of the summer prior to their arrival on campus. In this email we 

made clear the types of data collected, provided a link to the project webpage, and also described 

the technical specifications of the phone they would be using. During the Media Lab incoming 

student orientation in the beginning of September, we again presented the opportunity and 

requested that the interested students begin the study immediately. 

At approximately the same time we gave several talks to incoming Sloan students and were able 

to get a Sloan club to find out how many students in each of the six Sloan “oceans” (working 
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groups comprised of 60 incoming business school students) would like to participate. We 

dispersed phones to the students in the two oceans (10 and 15 each, respectively) that had the 

most volunteers with a supported wireless service provider.   

3.2.2 Informed Consent 

Prior to starting the study, each subject had to read and sign a detailed consent form listing the 

type of data to be gathered, providing sample data, detailing how the data would be treated, and 

describing what it would be used for. A sample of this consent form is available on the project’s 

webpage (http://reality.media.mit.edu/pdfs/consent.pdf). 

3.2.3 Privacy Implications & Reactions 

Upon reading the consent form, subjects were given a phone and instructions on its operation. 

Every subject was shown how to disable the logging application and was told that she could do so 

freely. (In reality, very few subjects ever used this feature, but just having the functionality 

provided piece of mind to many subjects when being introduced to the study.) However, even 

with these privacy protection measures, the ability to mine the reality of our one hundred users 

raises justifiable concerns. When the study was described to others outside of MIT, reactions 

were typically apprehensive. While this experiment may be possible at a technical university 

where people are comfortable with the technology and its limitations, there may need to be 

significant differences in research design should this scale to a more ‘typical’ demographic. 

3.3 Apparatus 

This experiment uses 100 Nokia 6600 mobile phones. The 6600 was selected because we are 

using a custom version of the Context software [Renanto et al. (2005)], which can only be run on 

Symbian Series 60 mobile phones. Over the course of the first two months of the study, we used 

over 10 variations of this application; however, as it became more stable, we converged to a final 

version that has proven to be adequately robust. The ramifications of this early debugging period 

will be discussed in the data validation section. 
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Figure 2. The Nokia 6600, a Symbian Series 60 Phone. This phone comes with 6 MB of internal 
memory and a 32MB MMC flash memory card. Custom applications can be loaded onto the phone 
from the GRPS data network, Bluetooth, memory card, or the infrared port. 

3.4 Procedure 

As described above, each phone continuously logs the cellular towers to which it is connected, 

along with the visible Bluetooth devices in its vicinity. This section will go into detail on the 

procedure of collecting and analyzing both types of data. 

3.4.1 Continuous Bluetooth Scanning 

It is possible to exploit the fact that modern phones have both short-range RF network (e.g., 

Bluetooth) and a long-range RF network (e.g., GSM), and that the two networks can augment 

each other for location and activity inference. The idea of logging cell tower ID to determine 

approximate location will be familiar to readers, but the idea of logging Bluetooth IDs (BTIDs) is 

relatively recent and provides very different types of information.    

Bluetooth is a wireless protocol in the 2.40-2.48 GHz range, developed by Ericsson in 1994 and 

released in 1998 as a serial-cable replacement to connect different devices. Although market 

adoption has been initially slow, according to industry research estimates, by 2006 90% of PDAs, 

80% of laptops, and 75% of mobile phones will be shipped with Bluetooth [ZelosGroup, (2004)].  

Every Bluetooth device is capable of ‘device discovery,’ which allows it to collect information on 

other Bluetooth devices within 5-10 meters. This information includes the Bluetooth MAC 

address (BTID), device name, and device type. The BTID is a hexadecimal number unique to the 

particular device. The device name can be set at the user’s discretion; e.g., “Tony’s Nokia.” 

Finally, the device type is a set of three integers that correspond to the device discovered; e.g., 

Nokia mobile phone, or IBM laptop. While Bluetooth device discovery was originally developed 
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to pair two devices owned by the same user, it has also enabled mobile communication devices to 

act as online introduction systems, except the introduction is situated in an immediate social 

context, rather than asynchronously in front of a desktop computer. 

BlueAware is a MIDP2 (Java for mobile devices) application designed to record and timestamp 

the BTIDs encountered in a proximity log, similar to the Jabberwocky project [Paulos & 

Goodman (2004)]. If a device is detected that has not been recently recorded in the proximity log, 

the application automatically sends the discovered BTID over the GPRS network to the 

Serendipity server. Continually scanning and logging BTIDs can expend an older mobile phone 

battery in about 18 hours. While continuous scans provide a rich depiction of a user’s dynamic 

environment, most individuals are used to having phones with standby times exceeding 48 hours. 

Therefore BlueAware was modified to scan the environment only once every five minutes, 

providing at least 36 hours of standby time. 

  

Figure 3. Methods of detecting Bluetooth devices – BlueAware and Bluedar. BlueAware (left) is 
running in the foreground on a Nokia 3650. BlueAware is an application that runs on Symbian Series 
60 phones.  It runs in the background and performs repeated Bluetooth scans of the environment 
every five minutes. Bluedar (right) is comprised of a Bluetooth beacon coupled with a WiFi bridge. It 
also performs cyclic Bluetooth scans and sends the resulting BTIDs over the 802.11b network to the 
Reality Mining server. 

BlueAware is automatically run in the background when the phone is turned on, making it 

essentially invisible to the user except for an initial dialogue box alert at startup. These types of 

alerts were incorporated into the system to remind users the application is indeed logging 

Bluetooth devices. Additionally, the application was designed with a user interface that allows the 

users to read and delete the specific data being collected, as well as to stop the logging 

completely. 
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A variation on BlueAware is Bluedar. Bluedar was developed to be placed in a social setting and 

continuously scan for visible devices, wirelessly transmitting detected BTIDs to a server over an 

802.11b network.  The heart of the device is a Bluetooth beacon designed by Mat Laibowitz 

incorporating a class 2 Bluetooth chipset that can be controlled by an XPort web server 

[Laibowitz (2004)]. We integrated this beacon with an 802.11b wireless bridge and packaged 

them in an unobtrusive box. An application was written to continuously telnet into multiple 

Bluedar systems, repeatedly scan for Bluetooth devices, and transmit the discovered proximate 

BTIDs to our server. Because the Bluetooth chipset is a class 1 device, it is able to detect any 

visible Bluetooth device within a working range of up to twenty-five meters. We are currently 

using the system to prototype Serendipity, a proximity-based introduction service described in 

Chapter 7. 

3.4.2 Cell Tower Probability Distributions 

There has been a significant amount of research that correlates cell tower ID with a user’s 

location [Bar-Noy and Kessler (1993), Bhattacharya and Das (1999), Kim and Lee (1996)]. For 

example, Laasonen et al. describe a method of inferring significant locations from cell tower 

information through analysis of the adjacency matrix formed by proximate towers. They showed 

reasonable route recognition rates, and most importantly, succeeded in running their algorithms 

directly on the mobile phone [Laasonen et al. (2004)]. 

Obtaining accurate location information from cell towers is complicated by the fact that phones 

can detect cell towers that are several miles away.  Furthermore, in urban areas it is not 

uncommon to be within range of more than a dozen different towers. The inclusion of 

information about all the current visible towers as well as their respective signal strengths would 

help solve the location classification problem, although multipath distortion may still confound 

estimates.  

We observe that relatively high location accuracy may also be achieved if the user spends enough 

time in one place to provide an estimate of the cell tower probability density function. Phones in 

the same location can be connected to different cell towers at different times depending on a 

variety of variables, including signal strength and network traffic.  Thus, over time, each phone 

‘sees’ a number of different cell towers, and the distribution of detected towers can vary 
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substantially with even small changes in location. Figure 4 shows the distribution of cell towers 

seen for a given area with a 10m radius. Towers were only included in these distributions if the 

common area’s static Bluetooth desktop computer was also visible, ensuring the users’ locations 

within 10m (or less). Discrepancies in the distributions are attributed to the users’ typical position 

within the 10m radius. Users 2 and 4 both share a window office and have virtually the same cell 

tower distribution, despite having a very different distribution of hours spent in the office (as 

verified by the Bluetooth and cell tower logs).  Users 1 and 5 both spend the majority of their 

time in the common area away from the windows and see only half as many towers as the others. 

User 3 is in a second office in the same area, and has a distribution of cell towers that is 

intermediate between the two other sets of users. 

 

Figure 4 Cell Tower Probability Distributions. The probability of seeing one of 25 cell towers is 
plotted above for five users who work on the third floor corner of the same office building. Each 
tower is listed on the x-axis and the probability of the phone logging it while the user is in his office is 
shown on the y-axis. (Range was assured to 10m by the presence of a static Bluetooth device.) It can 
be seen that each user “sees” a different distribution of cell towers dependent on the location of his 
office, with the exception of Users 4 & 5, who are officemates and have the same distribution despite 
being in the office at different times. 

Despite progress in mapping cell tower to location, the resolution simply cannot be as high as 

many location-based services require. GPS is an alternative approach that has been used for 

location detection and classification [Ashbrook and Starner (2003), Liao et al. (2004), Wolf et al. 

(2001)], but the line-of-sight requirements prohibit it from working indoors. We have therefore 
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incorporated the use of static Bluetooth device ID as an additional indicator of location, and 

shown that it provides a significant improvement in user localization, especially within office 

environments. This fusion of data is particularly appropriate since areas where cellular signals are 

weak, such as in the middle of large buildings, often correspond to places where there are many 

static Bluetooth devices, such as desktop computers. On average, the subjects in our study were 

without mobile phone reception 6% of the time. When they did not have reception, however, they 

were within range of a static Bluetooth device or another mobile phone 21% and 29% of their 

time, respectively. We expect coverage by Bluetooth devices to increase dramatically in the near 

future as they become more common in computers and electronic equipment.  

We believe the BTID may become as important as cell tower mapping for estimation of user 

location. Figure 5 below shows the ten most frequently detected Bluetooth devices for one subject 

averaged over the month of January. This figure not only provides insight into the times the user 

is in his office (from the frequencies of the top ‘Desktop’), but as mentioned in Section 4, also 

gives insight into the type of relationship with other subjects. For example, the figure suggests the 

user leaves his office during the hour of 14:00 and becomes increasingly proximate to Subject 4. 

Judging from the strong cut-offs at 9:00 and 17:00, it is clear this subject had very regular hours 

during the month, and thus has fairly predictable high-level behavior. This “low entropy” 

behavior is also depicted in Figure 6. 

 

Figure 5. The top ten Bluetooth devices encountered for Subject 9 during the month of January. The 
subject is only regularly proximate to other Bluetooth devices between 9:00 and 17:00, while at work 
– but never at any other times. This predictable behavior will be defined in Chapter 4 as ‘low 
entropy.’  The subject’s desktop computer is logged most frequently throughout the day, with the 
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exception of the hour between 14:00 and 15:00. During this time window, Subject 9 is proximate 
more often to Subject 4 than his desktop computer.  

 

 

Figure 6. The number of proximate Bluetooth devices for Subject 9 for each day between September 
3, 2004 and January 21, 2005.  Weekends are bands of white indicative of the subject not going into 
work and therefore not logging any Bluetooth devices. The subject’s 9:00 – 17:00 work schedule is 
rarely interrupted, with the exception of several days in October during the lab’s ‘sponsor week,’ 
discussed in Chapter 5. 

3.5 Data Collection and Validation 

While the Reality Mining experiment was designed to minimize the amount of time required for 

data collection, this section will discuss the reasons why the first several months of the 

experiment demanded a significant amount of time from the researchers. It will then go on to 

quantify the amount of missing data and describe different data validation methods.  

3.5.1 Data Collection 

Data were collected from the phones periodically through the first semester. The original version 

of the application stored data on the phone’s limited internal memory. This necessitated frequent 

collection, typically involving the subjects coming to the researcher’s office for a ‘data dump.’ To 

get the data off of the phones with the original application it was necessary to use the infrared 

port (Bluetooth proved to be unreliable.). Due to the limited bandwidth of the IRDA (infrared) 
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protocol, this process took approximately five minutes. These visits also typically consisted of an 

application ‘upgrade’ which took another five minutes.  

While these frequent visits were initially important to debug the application, it quickly became 

apparent that this type of collection technique simply took too much time both for the researchers 

and the participants. The phone application was subsequently modified to store data on each 

phone’s removable 32MB MMC flash memory card. One month of data consists of 

approximately 5-10 MB of data, making this solution seemingly ideal. However, we did not 

initially account for the read/write limitations of flash memory, and as a result initially lost a 

significant amount of data, as described in the following section. When the program was modified 

to write more efficiently to the cards, we were able to postpone the data collection until the end of 

the semester.  

However, we also pursued an alternate approach for data collection for a subset of our subjects 

who were T-mobile subscribers. T-mobile offers a limited internet service called ‘t-zones’ for $5 

per month that allows users access to email. For fifteen subjects with this service plan, we set up 

the application to send data over port 995 (the port T-mobile left open for email) to our proxy 

server which would subsequently pass the data over the correct port to our secure data storage 

server. Data from the subjects’ phones are automatically sent at 3am each morning when the 

phones are typically charging and the complete transfer time consists of less than two minutes. By 

automatically sending the data to our server, a variety of additional applications (such as an 

online diary) are enabled, in addition to providing researchers virtually real-time feedback on the 

status of the application and the subjects. 

Besides collecting data from mobile phones, we have also collected self-report data from online 

surveys. Over the course of the experiment, three surveys were conducted with a response rate of 

70%, 65%, and 95%, respectively. The surveys queried subjects about their mobile phone usage, 

their daily behavior patterns, as well as their satisfaction with MIT, their social circle, and their 

work group. Finally, the last questions included a list of every subject and asked the informant to 

rate her frequency of interaction and whether the subject was in the informant’s ‘circle of 

friends.’ We will show in the subsequent sections how this survey data complements the primary 

dataset from the phones and how we will be able to use it to learn about informant accuracy. 
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3.5.2 Data Validation 

While the custom logging application on the phone crashes occasionally (approximately once 

every week), these crashes fortunately do not result in significant data loss. An additional small 

application was written to start on boot and continually review the running processes on the 

phone, verifying that our logging application is always running. Should there be a time when this 

is not the case, the application is immediately restarted. This functionality also ensures that 

logging begins immediately once the phone is turned on. However, while this logging application 

is now fairly robust and can be assumed to be running anytime the phone is on, the dataset 

generated is certainly not without noise. The following section describes errors introduced into 

the data in three ways: through data corruption, device detection failures and, most significantly, 

through human error.  

Data Corruption. The data logs are stored on a flash memory card, which has a finite number of 

read-write cycles. Initial versions of our application wrote over the same cells of the memory 

card. This led to failure of a new card after about a month of data collection, resulting in the 

complete loss of data. When the application was changed to store the incremental logs in RAM 

and subsequently write each complete log to the flash memory, our data corruption issues 

virtually vanished. However, ten cards were lost before this problem was identified, destroying 

portions of the data collected during the months of September and October for six Sloan students 

and four Media Lab students.  

Bluetooth Errors. One central intent of this research is to verify the accuracy of automatically 

collected data from mobile phones for quantifying social networks. We are facing several 

technical issues. The ten-meter range of Bluetooth, along with the fact that it can penetrate some 

types of walls, means that people not physically proximate may incorrectly be logged as such. By 

scanning only periodically every five minutes, shorter proximity events may also be missed. 

Additionally, from the 5 million logged Bluetooth scans in our dataset, we have found that there 

is a small probability (between 1-3% depending on the phone) that a proximate, visible device 

will not be discovered during a scan. Typically this is due to either a low-level Symbian crash of 

an application called the “BTServer,” or a lapse in the device discovery protocol. The BT server 

crashes and restarts approximately once every three days (at a 5 minute scanning interval) and 
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accounts for a small fraction of the total error. However, to detect other subjects, we can leverage 

the redundancy implicit in the system. Because both of the subjects’ phones are actually scanning, 

the probability of a simultaneous crash or device discovery error is less than 1 in 1000 scans. 

In our tests at MIT, we have empirically found that these errors have little effect on the extremely 

strong correlations between interaction (survey data) and the 10m Bluetooth proximity 

information.  These problems therefore produce a small amount of ‘background noise’ against 

which the true proximity relationships can be reasonably measured.  However, social interactions 

within an academic institution are not necessarily typical of a broader cross-section of society and 

the errors may be more severe or more patterned. If testing in a more general population shows 

that the level of background noise is unacceptable, there are various technical remedies available.  

For instance, the temporal pattern of BTID logs allows us to identify various anomalous 

situations.  If someone is not involved in a specific group conversation but just walking by, then 

she will often enter and leave the log at a different time than the members of the group.  Similar 

geometric and temporal constraints can be used to identify other anomalous logs.   

Human-Induced Errors. The two primary types of human-induced errors in this dataset result  

either from the phone being off or separated from the user. The first error comes from the phone 

being either explicitly turned off by the user or exhausting the batteries. According to our 

collected survey data, users report exhausting the batteries approximately 2.5 times each month. 

One fifth of our subjects manually turn the phone off on a regular basis during specific contexts 

such as classes, movies, and (most frequently) when sleeping. Immediately before the phone 

powers down, the event is timestamped and the most recent log is closed. A new log is created 

when the phone is restarted and again a timestamp is associated with the event. Additionally, six 

of the hundred phones in the study have been either lost or irreparably destroyed (most notably, 

one phone was repeatedly run over by a large bus). The subjects who had these phones were 

given spare phones if available, or otherwise were forced to drop out of the experiment. 

A more critical source of error occurs when the phone is left on, but not carried by the user. From 

surveys, we have found that 30% of our subjects claim never to forget their phones, while 40% 

report forgetting them about once each month, and the remaining 30% state that they forget the 

phone approximately once each week.  Identifying the times when the phone is on, but left at 

home or in the office, presents a significant challenge when working with the dataset. To grapple 
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with the problem, we developed a ‘forgotten phone’ classifier. Features include staying in the 

same location for an extended period of time, charging, and remaining idle through missed phone 

calls, text messages and alarms. When applied to a subsection of the dataset that had 

corresponding diary text labels, the classifier was able to identify the day the phone was 

forgotten, but also mislabeled a day when the user stayed home sick. By ignoring both days, we 

risk throwing out data on outlying days, but have greater certainty that the phone is actually with 

the user. A significantly harder problem is to determine whether the user has temporarily moved 

beyond ten meters of his or her office without taking the phone. Casual observation indicates that 

this appears to happen with many subjects on a regular basis and there doesn’t seem to be enough 

unique features of the event to classify it accurately.  However, as described in the survey 

comparison section, this phenomenon does not diminish the extremely strong correlation between 

detected proximity and self-report interactions. Lastly, as discussed in the relationship inference 

section, while frequency of proximity within the workplace can be useful, the most salient data 

comes from detecting a proximity event outside MIT, where temporarily forgetting the phone is 

less likely to repeatedly occur.  

Missing Data. Because we know when each subject began the study, as well as the dates that 

have been logged, we can know exactly when we are missing data. This missing data is due to 

two main errors discussed above: data corruption and powered-off devices. On average we have 

logs accounting for approximately 85.3% of the time since the phones have been deployed. Less 

than 5% of this is due to data corruption, while the majority of the missing 14.7% is due to almost 

one fifth of the subjects turning off their phones at night. 

Other Measures: Surveys & Diaries. In return for the use of the Nokia 6600 phones, students 

have been asked to fill out web-based surveys regarding their social activities and the people they 

interact with throughout the day. Comparison of the logs with survey data has given us insight 

into our dataset’s ability accurately to map social network dynamics.  Through surveys of 

approximately forty senior students, we have validated that the reported frequency of (self-report) 

interaction is strongly correlated with the number of logged BTIDs (R=.78, p=.003), and that the 

dyadic self-report data has a similar correlation with the dyadic proximity data (R=.74, p<.0001). 

Interestingly, as will be discussed in Chapter 4, the surveys were not significantly correlated with 

the proximity logs of the incoming students. Additionally, a subset of subjects kept detailed 



51 

 

activity diaries over several months. Comparisons revealed no systematic errors with respect to 

proximity and location, except for omissions due to the phone being turned off.  

3.6 The Final Dataset 

Data collection began for six subjects in mid-July of 2004, and the project scaled to 

approximately one hundred subjects by the beginning of October. Since then, we have had eleven 

subjects drop out of the study and ten new subjects begin. We plan on “cleaning” this data of 

identifiable traits such as personal phone numbers and names and providing it to other researchers 

in academia. 

However, the Reality Mining experiment is still an ongoing research project. Over 80% of the 

subjects will remain at MIT for the next (2006-2007) academic year and most are willing to 

continue using our phones. We are also in the process of requesting an additional 250 phones 

from Nokia, and are looking to launch similar projects at other universities. Now that we have 

worked most of the bugs out of the system, it is becoming increasingly easy to run these 

experiments remotely, and therefore collecting data from other countries and cultures is now a 

possibility. The existing 300,000 hours of continuous human behavior data is only the beginning.  
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Chapter 4 Sensing Complex Social Systems 

In this section we discuss five examples of how this data can be used in the social sciences. The 

first part of this section will discuss contextualized mobile phone usage patterns. Second, we will 

analyze how the data from the phones compare with the responses to survey questions regarding 

interaction and proximity.  Moving from dyads to teams, we show correlations between outcomes 

of interests (namely satisfaction with the team) and proximity. Using communication log activity 

we demonstrate the possibility of quantifying the evolution of a user’s social network. Finally we 

discuss how sampling rates affect standard structural measures of dynamic networks. 

 

Figure 7. Movement and communication visualization of the Reality Mining subjects. In 
collaboration with Stephen Guerin of Redfish Inc, we have built a Macromedia Shockwave 
visualization of the movement and communication behavior of our subjects. Location is based on 
approximate location of cell towers, while the links between subjects are indicative of phone 
communication.  

4.1 Phone Usage Statistics 

The capture of mobile phone usage patterns for one hundred people over an extended period of 

time can provide insight into both the users and the ease of use of the device itself. For example, 

35% of our subjects use the clock application on a regular basis (primarily to set the alarm clock 

and then subsequently to press snooze), yet it takes 10 keystrokes to open the application from the 
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phone’s default settings. Not surprisingly, specific applications, such as the alarm clock, seem to 

be used much more often at home than at work. Figure 8 is a graph of the aggregate popularity of 

the following applications when both at home and at work. It is interesting to note that despite the 

subjects being technically savvy, there was not a significant amount of usage of the sophisticated 

features of the phone; indeed, the default game “Snake” was used just as much as the elaborate 

Media Player application.  

 

Figure 8. Average application usage in three locations (Home, Work, and Other) for 100 subjects. 
The x-axis displays the fraction of time each application is used, as a function of total application 
usage. For example, the usage at home of the clock application comprises almost 3% of the total 
times the phone is used. The ‘phone’ application itself comprises more than 80% of the total usage 
and was not included in this figure. 

While there is much to be gained from a contextual analysis of new application usage, perhaps 

the most important and still most popular use of the mobile phone is as a communication device. 

Figure 9 is a break down of the different types of usage patterns from a selection of the subjects. 

Approximately 81% of communication on the phone was completed by placing or receiving a 

voice call. Data (primarily email) were at 13% of the communication, while text messaging was 

5%. 

 



54 

 

 

Figure 9. Average communication media for 90 subjects (approximately 10 of the subjects did not use 
the phones as a communication device and were excluded from this analysis). The colorbar on the 
right indicates the percentage each communication medium (Voice, Text, and Data) is used. All 
subjects use voice as the primary means of communication, while about 20% also actively use the 
data capabilities of the phone. Fewer than 10% of the subjects send a significant number of text 
messages. 

Learning users’ application routines can enable the phone to place a well-used application in 

more prominent places, for example, as well as to create a better model of the behavior of an 

individual [Wolf et al. (2001)]. As we shall show in Chapter 5, these models can also be 

augmented with additional information about a user’s social context.  

4.2 Reality Mining vs. Self-Report Data 

In the past, researchers have relied on data from employee surveys, which can consume an 

extensive amount of an organization’s time. Additionally, the surveys typically rely on 

participants to self-report their behavior, sometimes leading to biases in the data. Furthermore, the 

surveys present just a static view of an organization’s social network. Although by no means a 

replacement for survey data, the Reality Mining data have significant advantages as a 

complementary method. First, the method doesn’t require any self-reporting, easing the time 

demand on participants and ensuring greater data accuracy. Also, the method provides more than 

just a “snapshot” of a social network. In fact, continuous information can be obtained to 

characterize how a network evolves over time, much like time-lapse photography. 

As discussed in Chapter 2, one of the major problems with traditional social science experiments 

is the fact that data from survey questions about a subject’s behavior are confounded as the 

subject’s actual behavior data. As Bernard et al. have repeatedly shown, self-report data are 

seldom strongly correlated with actual behavior, a phenomenon that many within the social 

sciences chose to ignore. 
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Through the use of data from mobile phones, we have attempted to quantify how these 

automatically generated behavioral “observations” compare with reported behavior from two 

different subject demographics: incoming students and senior students.  

26 Senior Students -- 

Average BT Encounters / day 

26 Incoming Students –  

Average BT Encounters / day 

 

Aggregate Self Report / Proximity 
Data 

R p R p 

Self Report Interaction in-degree .72 <.00001 .10 >.1 

Self Report Interaction out-degree .60 .0012 .10 >.1 

Self Report Friendship in-degree .48 .014 -.12 >.1 

Self Report Friendship out-degree .24 >.1 -.21 >.1 

Table 2. The table above displays the correlations between the number of Bluetooth encounters with 
other subjects and self report responses about interaction and friendship networks. Each contains 26 
subjects who have submitted at least 750 hours (~30 days) of data. The highest correlations occur 
between the number of interactions subjects reported having with senior students and their daily 
average of Bluetooth encounters.  Very little correlation exists between the incoming students’ self-
report data and the number of Bluetooth encounters. 

26 Senior Students -- 

Dyadic Proximity Data 

26 Incoming Students –  

Dyadic Proximity Data 

 

Dyadic Correlations 

(Correlations between People) 
R p R p 

Dyadic Self Report Interaction .45 <.00001 .62 <.00001 

Table 3. This table shows that correlation between the reported and the average number of times 
their two phones have been recorded as proximate in the Bluetooth logs. It is interesting to note that 
the self-report data on interactions from the 26 senior students have a markedly lower correlation 
with the proximity data than the same correlation with the incoming student subjects. 

It is not immediately apparent why there is such a discrepancy between the two tables above. In 

the first table, it is striking how high the correlation is between the average number of Bluetooth 

devices encountered and both the number of interactions the senior students report and the 

interactions the senior students have reported about them (in-degree and out-degree, 

respectively). Similarly, it is equally striking how little correlation exists when the incoming 

students are involved in the same experiment. This phenomenon becomes even stranger in light 

of the information from the second table. It is possible to infer from this data that the incoming 
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students appear to be more reliable at reporting with whom they interact, despite the fact that the 

number of Bluetooth encounters they have is almost independent of their survey responses. 

4.3 Team Density and Satisfaction 

While proximity provides one metric for quantifying team dynamics, it is also important to look 

at the density of friendship ties within working groups. Not surprisingly, it turns out that 

incoming Media Lab students have almost one third the friends in their working group than their 

senior counterparts (density of .14 vs. .054). This could be one explanation for the results 

regarding correlations between satisfaction and interactions between friends shown below. 

20 Senior ML subjects 26 Incoming Students Satisfaction / Proximity 
and Communication with 

Friends Proximity to 
Friends 

R (p) 

Communication 
with friends 

R (p) 

Proximity to 
Friends 

R (p) 

Communication 
with friends  

R (p) 

Satisfaction with Group 
Meetings 

.88 (.0001) .69 (.02) -.22 (>.1) -.51 (.08) 

Satisfaction with Group 
Professional Support 

.84 (.0007) .69 (.03) -.05 (>.1) -.12 (>.1) 

Satisfaction with Group 
Personal Support 

.68 (.01) .31 (>.1) .10 (>.1) -.32 (>.1) 

Table 4. This table displays statistics relating research group satisfaction and proximity / 
communication with friends. The demographic on the left contains the top 20 people who have been 
at the lab for over a year and have logged over 2000 hours of data. The demographic on the right 
contains 26 first-year students who have logged at least 750 hours of data.  

The findings shown in the table above suggest that the satisfaction the senior Media Lab subjects 

have with their research group is correlated with how often they interact with their friends. In 

contrast, there is little, if any, correlation between the research group satisfaction and interaction 

with friends for the incoming students. This points to the importance of stable, cohesive, teams, 

and confirms prior findings in the literature. It has been shown that the more ties teammates have 

to one another – that is, the greater the density of team ties -- the better the team performs 

(Balkundi & Harrison, 2005).  Baldwin, Bedell, & Johnson (1997) examined network ties within 

and among 62 small groups of masters students.  Baldwin et al. found that the number of 

friendship and advice ties within a group was positively associated with perceptions of group 
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effectiveness, which in turn were positively associated with group grade. The results presented in 

this section should continue to reemphasize the importance of creating work environments that 

encourage cohesiveness and nurture ties that transcend the workplace. 

4.4 Social Network Evolution 

Thirty-five of the subjects in the Reality Mining experiment are incoming students who began the 

experiment soon after arriving at MIT. By selecting incoming students as participants, we have 

been able to quantify how each student’s social circle evolves over the course of the semester, 

and how quickly it converged to a steady state. 

While Bluetooth proximity patterns provide a unique insight into the dynamics of the subset of a 

subject’s social network that also carry Bluetooth phones, to fully understand how the network 

evolves, it is necessary to incorporate a larger fraction of the subject’s entire network. A phone’s 

call log is ideal to quantify a subject’s active social network. Not only do we have communication 

duration, context and frequency, but we also have this data over extended periods of time. This is 

especially salient for incoming students who, presumably, arrive on campus with a very sparse 

social network, and rapidly have it grow over the course of their first semester until it reaches 

‘steady-state,’ when the size of the network eventually becomes constant.  

The rate of a network’s growth can be indicative of particular demographics. For example, one of 

the key benefits of business school is the network that students have upon graduation. It would 

follow that these students consciously work at continually expanding their social network to make 

the most of their time at school. While the importance of ‘networking’ is not lost on other 

incoming students, empirically there does not seem to be as much emphasis on generating new 

links in one’s social network.  

This hypothesis can be tested through analysis of the communication activity of the two 

demographics over the course of their first semester. Figure 9 shows the average number of 

unique phone numbers each of the two demographic log between the two months of October and 

November. 
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Figure 10. It is clear that the average number of unique phone numbers logged for the 15 incoming 
Media Lab students and the 25 Sloan students decays at two very different rates. The incoming 
Media Lab students are closer to their networks’ steady-state, while the average growth of a typical 
business school student’s network does not appear to have slowed down significantly within her first 
two months at MIT.  

Starting on October 1st, both the incoming business school students and the Media Lab students 

call on average 15 unique numbers during the first week of October. However, the subsequent 

weeks show the average growth rate slowing to only five new numbers each week for the Media 

Lab students. In contrast, the business school average network continues to grow at 

approximately twice that rate. The Media Lab network’s growth slows even more during the last 

two weeks of November, to approximately three new numbers per week, while the business 

school network shows very little signs of diminishing growth. This new empirical method of 

quantifying the evolution of a social network confirms what is common knowledge on most 

college campuses: there is a much stronger emphasis on ‘networking’ at a business school than on 

the rest of campus.   
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4.5 Sampling Dynamic Networks 

The topology of complex networks, such as that of social and technological networks, is often a 

dynamic property with edges and vertices appearing and disappearing in time. Most 

characterizations of them, however, assume the topology is fixed in time, or, at best, the changes 

are aggregated into a discrete sequence of adjacencies where network parameters are measured as 

a function of time. Using an empirical network with high-resolution temporal data, we show that 

the size of the sampling interval ∆  determines the value of the measured network parameters. We 

then show that spectral analysis can uncover the natural harmonics of topological dynamics and 

indicate the correct sampling rate, which we then use to measure several topological statistics of 

our network.   

4.5.1 Overview 

Complex systems of interacting components can often be represented as a network, i.e., n  nodes 

or vertices joined together in pairs by m  links or edges, and the analysis of the resulting 

topological structure [Newman (2003), Albert & Barabási (2002), Dorogovtsev & Mendes 

(2002)] can yield significant insights into the original system. Recently, systems from a wide 

variety of domains, including social [Newman & Park (2003), Scott (2000), Watts & Strogatz 

(1998)], technological [Clauset & Moore (2005), Jeong & Barabási (1999), Kleinberg & 

Lawrence (2001)] and biological [Shen-Orr et al. (2002), Williams & Martinex (2000), Jeong et 

al. (2000)] systems, have been formulated as networks. Two of the most commonly measured and 

best studied topological features of networks are the degree distribution, i.e., the probability 

( )P k  that a randomly selected vertex will have k neighbors, and the clustering coefficient C , 

i.e., the probability that two neighbors y , z  of a vertex x  will themselves be neighbors. It is 

now well documented that many real world networks have highly right-skewed degree 

distributions, either exponential ( ) e kP k α−∼  or power-law ( )P k k α−∼  distributions where α  is 

some constant, and large clustering coefficients, with typical values being 0 1 0 5C. ≤ ≤ . , relative 

to a purely random graph.  

However, for many networks, the topology is not a static property: both the number of edges and 

vertices fluctuate in time. Traditionally, network analysis deals with this variability in one of the 
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following ways: 1) assume that the topology is effectively static, i.e., network structure can be 

sampled quickly relative to the speed of the fluctuations, 2) assume that any fluctuations at most 

add a small amount of unbiased noise to any measurements, or 3) incorporate the fluctuations into 

the analysis by measuring topological features over a sequence of network “snapshots” in which 

the interactions are aggregated over sequential periods of length ∆  (where ∆  might be very 

small). Generally, this latter approach is the most common one used for the analysis of explicitly 

dynamic topologies and has been used to characterize the evolution of a Brazilian soccer 

network [Onody & de Castro (2004)], an email exchange, scientific collaboration, and online 

dating networks [Holme (2003)], the student affiliation network of a Korean university [Holme et 

al. (2004)], as well as the Internet, a co-authorship network and a semantic network [Vazquez et 

al. (2005)].  

In this section, we address the question of how to analyze the structure of a network with a 

dynamic topology. In particular, we characterize the effect of the sampling interval ∆  on the 

measured topological parameters, such as degree statistics, the correlation coefficient, and a 

topology similarity measure that we introduce. We show choosing a sampling interval ∆  

determines the measured network statistics. Additionally, we show that spectral methods can help 

us to uncover known natural periodicity in the network dynamics and select an appropriate ∆  by 

which to characterize the network’s structure. Finally, we briefly comment on the significance of 

our results to other dynamic network studies, and on the implications for future studies as more 

dynamic network data become available.  

4.5.2 Network Metrics  

In this section, we briefly review existing and commonly used network metrics for static 

topologies and their extension to network sequences. We also introduce a similar metric for 

characterizing the extent of correlation between the topologies of two networks.  

Traditional Methods. Networks are often represented as an adjacency matrix A , which is 

defined as  

 
1 if vertices and are connected
0 otherwisei j

i j
A ,

,
=  .
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From this, one can calculate the degree of each vertex i  by taking the corresponding row (or 

column) sum. The distribution of these degrees ( )P k  is a ubiquitous first-order representation of 

the network’s topological structure. It is notable that the value of the mean degree k  is closely 

connected with the concept of the excess, which is the number of additional edges in the network 

beyond that required to ensure that a path exists between any two vertices. Adjacency matrices 

are generalizable to weighted graphs, and the row (column) sum then becomes the strength of the 

vertex, with ( )P w  the distribution of strengths.  

The clustering coefficient C  is a measure of the density of triangles in the graph, and represents 

the probability that two vertices that have a common neighbor will themselves be neighbors. The 

clustering coefficient is given as 

1

1 (number of triangles centered on vertex )
(number of triples centered on vertex )

n

i

iC
n i=

= .∑   4-1 

where n  is the number of vertices in the network. Most real world networks exhibit large 

clustering coefficients relative to random graphs [Erdős & Rényi (1960)]. Note that a large 

average degree k  does not necessarily imply a large clustering coefficient, although it may, when 

1k n/ ∼ . The clustering coefficient can be generalized to weighted graphs [Barthélemy et al. 

(2005)].  

Adjacency Correlation. Here, we propose a similarity measure of a vertex’s connectivity at one 

moment and another, which we call the adjacency correlation γ . Given a pair of adjacency 

matrices 1( )tA  and 2( )tA  at times 1t  and 2t , the similarity of the connectivity for a vertex j  

between these two moments is simply the correlation between the adjacency vectors for j . 

However, when the graph is sparse, i.e., m n∼ , as is the case for most real world graphs of 

interest, most entries in both vectors will remain constant regardless of dynamics. Thus, without 

loss of generality, we may compute the correlation calculation simply over those elements that 

correspond to neighbors that j  connects to in either of the matrices. We denote this set as ( )N j , 

and the adjacency correlation for j  to be  
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( ) ( )
1 2

1 2

( ) ( )
( )

( ) ( )
( ) ( )

t t
i j i ji N j

j
t t

i j i ji N j i N j

A A

A A
γ , ,∈

, ,∈ ∈

=
∑

∑ ∑
.  4-2  

When the adjacency vectors contain no edges, the adjacency correlation is undefined, so for 

convenience, we take 1jγ =  in this case. We can easily generalize this metric to a sequence 

adjacency matrices ( )tA , with 1 2t … T= , , , , where we take ( )N j  to be the set of unique 

neighbors over all of these matrices. Averaging the adjacency correlation over all vertices yields 

the desired measure of topology similarity. Note that the adjacency correlation need not 

necessarily be computed between adjacent moments of time t  and 1t + , although this is the 

convention we adopt throughout this work, nor is it restricted to only unweighted or undirected 

networks.  

4.5.3 Sampling Dynamic Networks  

We now turn to the question of what impact sampling a changing topology has on the structural 

measures described in the previous section. As has been convention with studying dynamic 

networks, unless otherwise noted, we use the unweighted versions of the metrics. After 

demonstrating that the topology of our exemplar dynamic network evolves on a wide variety of 

time-scales, we will show that the sampling rate directly determines the calculated topological 

properties of the network’s structure.  

Sampled Topology. We now generalize the concept of sampling the topology of a dynamic 

network, and turn to the question of what effect varying the length of the sampling interval ∆  has 

on inferred topological parameters. Given a network with underlying continuous dynamics, in 

which edges have both an initiation and termination time, we define the sampled adjacency 

matrix ( )tB , which represents the network at moment t , to be  

 ( )

1 if vertices and are ever connected
between time and

0 otherwise

t
i j

i j
B t t,


= + ∆,
 .
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This process produces a discrete sequence of T  matrices, where 0 0 0 ( 1)t t t … t T= , + ∆, , + − ∆ . 

Conceptually, this definition is not unlike a series of time-lapse photographs, where within a 

snapshot, multiple transient interactions are seen as a single prolonged interaction; this is akin to 

classic under-sampling, and may introduce artificial structure when the sampling period is longer 

than the time-scale of the topological dynamics. It is often the case for empirical studies of 

dynamic networks that T  and ∆  are constrained by the availability of data, the assumption of a 

lower bound on the time scale of interactions, or a desire to ensure that a large fraction of vertices 

are connected, i.e., a giant component exists.  

      

Figure 11. The (a) mean degree k , (b) mean clustering coefficient C  and (c) complementary 
network adjacency correlation 1 γ− as a function of time for ∆ ={1440, 480, 240, 60, 15, 5} (minutes) 
during the week of 11 October through 17 October for the core 66 subjects. As ∆  grows, under-
sampling clearly washes out higher frequency fluctuations. 

Sampling Effects. From the high temporal resolution of the dynamic proximity network we may 

simulate a near arbitrary choice of ∆  and T , and thus explore the effects of sampling. Using the 

intervals {1440 480 240 60 15 5}∆ = , , , , ,  minutes, we compute the mean degree k  (Figure 11a), 

the clustering coefficient C  (Figure 11b), and the complementary network adjacency correlation 

1 γ−  (Figure 11c) for each adjacency matrix ( )tB  over the course of seven days beginning with 

11 October. The shortest sampling interval, 5∆ =  minutes, exhibits high frequency noise 

combined with low frequency structure; this latter arises from the subjects’ professional co-

location. As expected for sampling below the Nyquist rate, as ∆  increases, progressively lower 

frequency fluctuations are lost. Indeed, when 1440∆ =  minutes (1 day), most days appear 

equivalent within a metric, with slight differences emerging on the weekend. This regularity 

remains consistent over longer period of time; larger sampling intervals do not accurately reflect 

the fact that the topology evolves at a variety of time-scales and that interactions during a given 
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interval are often more typically recurrent than persistent. We attain similar periodic behavior for 

the weighted versions of these metrics; however, without loss of generality, we will discuss only 

the unweighted results in the subsequent sections.  

In Figure 12, we show the measured values of each metric averaged over the entire month of 

October as a function of ∆ . The roughly monotonic growth of each illustrates that a choice of 

sampling interval completely determines the resulting observed metric value.  

 

Figure 12. The values of each network metric (mean degree k n/ , mean clustering coefficient C  and 
mean complementary adjacency correlation 1 γ− ) during the month of October as a function of 
aggregation interval ∆ ; clearly, the value of each metric is proportional to the choice of ∆ .  
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Figure 13. The power spectra of three metric time series at 5∆ =  minutes over the course of the 
month of October. The principal peaks are at {24 12}∆ = ,  hours, with additional minor peaks at 

8∆ =  hours for the mean degree and clustering coefficient.  

Discussion. Representing a complex system as a network has been a powerful analytical 

paradigm. To date, much of the work done has been on static networks such as biochemical 

pathways, predator-prey relationships, and collaboration networks, in which edges are forever 

fixed rather than dynamic connections. However, there is great potential benefit in similarly 

representing and analyzing inherently dynamic systems such as proximity, social, genetic 

expression, and cell signaling networks. In representing these systems, we can only sample their 

topology over time; however, until now, there has been no principled study of how such sampling 

impacts the statistical results of network analysis. Additionally, there is a dearth of useful tools 

for such analysis. Towards improving this latter point, here we introduce a similarity statistic for 

comparing the topology of networks at different moments in time, which we call the adjacency 

correlation coefficient and denote as γ . 

In exploring the effects of the rate of sampling on the observed topology, we demonstrate that 

when a network’s structure changes over a broad range of time-scales, the inferred statistics are 
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completely determined by the choice of sampling rate. This determinism is the result of the 

largely monotonic increase in the network density k n/  with the length of the sampling interval 

∆ ; this result is extremely problematic for a dynamic network because it is not clear which of the 

values naturally characterizes the system. To resolve this problem, we show that spectral analysis 

techniques can characterize the network dynamics’ natural harmonics. This approach puts 

dynamic networks on familiar ground in the company of well-established tools. Additionally, the 

concept of dynamic networks having natural harmonics is novel; many previous characterizations 

have focused on networks that grow over time rather than on those that appear to be in a dynamic 

equilibrium.  

In addition to our results on sampling dynamic networks and their harmonic characterization, we 

make several comments on the measured properties of dynamic proximity networks. The 

broadness of the measured distribution of the persistence of edges is notable; however, it is 

clearly not so broad as to be a power law, as is often found in human systems [Newman (2005)]. 

We look forward to additional high resolution dynamic network data becoming available so as to 

determine if such a broad distribution is a ubiquitous feature of real dynamic complex networks. 

Although it is true for our dynamic proximity network, the harmonics of various networks 

statistics may not be synchronized in other dynamic networks; indeed, asynchronous behavior 

may be suggestive of non-equilibrium forces, while synchronous behavior suggests driving forces 

such as the period of the day and week, or perhaps self-organizing dynamics. Further work is 

needed to answer these and other questions. 
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Chapter 5 Illustrative Models and Applications 

In this chapter we will discuss how the data we are collecting can be modeled and applied to 

complex human networks on a variety of scales ranging from the single individual to the 

aggregate organization. We initially introduce the idea of entropy, or randomness, as a metric that 

can be quantified for an individual’s life. The more entropic a subject’s life, the harder it is to 

model and predict subsequent behavior. While additional models based on eigendecomposition 

are introduced in a subsequent chapter, we introduce the conditioned hidden Markov model in 

this chapter as a method of defining a user’s behavior. We then discuss two applications of this 

data for the individual: an automatically generated diary and a system for recognizing the gist of a 

user’s conversation using contextual information gathered from the phone. Secondly, we turn our 

attention to dyads and show that it is possible to infer relationships between subjects based on 

patterns in proximity data. Quantifying the dynamics of teams and organizations becomes the last 

subject of this chapter. We compare the patterns of two teams within the Media Lab and show 

how the lab as an aggregate responds to stimuli such as deadlines. 

5.1 Individual Modeling and Applications 

Although humans have the potential for relatively random patterns of behavior, there are easily 

identifiable routines in every person’s life. These can be found on a range of timescales: from the 

daily routines of getting out of bed, eating lunch, and driving home from work, to weekly patterns 

such as the Saturday afternoon softball games, to yearly patterns like seeing family during the 

holidays in December. While our ultimate goal is to create a predictive classifier that can perceive 

aspects of a user’s life more accurately than a human observer (including the actual user), we 

begin by building simple mechanisms that can recognize many of the common structures in the 

user’s routine.  Learning the structure of an individual’s routine has already been demonstrated 

using other modalities; however, we present this analysis as a foundation which will then be 

extended to demonstrate the learning of social structures.  

We begin with a simple model of behavior in three states: home, work, and elsewhere. The data 

are obtained from Bluetooth, cell tower, and temporal information collected from the phones. We 

then incorporate information from static Bluetooth devices (class 1, such as desktop computers), 
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using them as ‘cell towers’ to identify significant locations and localize the user to a ten meter 

radius. We show that most users spend a significant amount of time in the presence of static 

Bluetooth devices, particularly when they don’t have cell tower reception (e.g., inside the office 

building). This makes them an ideal supplement to cell towers for location classification.  

Applications that make use of this recognized structure include a diary that enables users to make 

limited queries into their own logged experiences, i.e., “When was the last time I saw Josh? 

Where was I? Who else was there?” Additionally, using a database of first-person commonsense 

propositions about daily life called LifeNet, we show it is possible to use contextual information 

from the phone to augment noisy speech recognition transcripts. For example, by conditioning on 

the fact that the user is in a restaurant with a friend, it is much easier to make sense of a 

conversation transcript that has only a 33% word recognition accuracy.  

5.1.1 The Entropy of Life 

Human life is inherently imbued with routine across all temporal scales, from minute-to-minute 

actions to monthly or yearly patterns. Many of these patterns in behavior are easy to recognize; 

however, some are more subtle. We attempt to quantify the amount of predictable structure in an 

individual’s life using an information entropy metric. In information theory, the amount of 

randomness in a signal corresponds to its entropy, as defined by Claude Shannon in his 1938 

master’s thesis at MIT in the equation below. 

2
1

( ) ( ) log ( )
n

i
H x p i p i

=

= −∑   5-1 

For a more concrete example, consider the problem of image compression (such as the jpeg 

standard) of an overhead photo taken of just an empty checkerboard. This image (in theory) can 

be significantly compressed because it does not contain much ‘information.’ Essentially the entire 

image could be recreated with the same, simple pattern. However, if the picture was taken during 

the middle of a match, the pieces on the board introduce more randomness into image, and 

therefore, it will prove to be a larger file because it contains more information, or entropy.  

Similarly, people who live entropic lives tend to be more variable and harder to predict, whereas 

low-entropy lives are characterized by strong patterns across all time scales. Figure 14 depicts the 



69 

 

patterns in cell tower transitions and the total number of Bluetooth devices encountered each hour 

during the month of January for Subject 9, a ‘low entropy’ subject.   

 

Figure 14. A ‘low-entropy’ (H = 30.9) subject’s daily distribution of home/work transitions and 
Bluetooth devices encounters during the month of January. The top figure shows the most likely 
location of the subject: “Work, Home, Elsewhere, and No Signal.”  While the subject’s state 
sporadically jumps to “No Signal,” the other states occur with very regular frequency. This is 
confirmed by the Bluetooth encounters plotted below representing the structured working schedule 
of the ‘low-entropy’ subject. 

It is clear that the subject is typically at home during the evening and night until 8:00, when he 

commutes to work, and then stays at work until 17:00 when he returns home. We can see that 

almost all of the Bluetooth devices are detected during these regular office hours, Monday 

through Friday. This is certainly not the case for many of the subjects. Figure 15 displays a 

different set of behaviors for Subject 8. The subject has much fewer regular patterns of location 

and in the evenings has other mobile devices in close proximity. We will use contextualized 

information about proximity with other mobile devices to infer relationships, described in section 

5.2.2.  
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Figure 15. A ‘high entropy’ (H = 48.5) subject’s daily distribution of home/work transitions and 
Bluetooth device encounters during the month of January. In contrast to Figure 14, the lack of 
readily apparently routine and structure makes this subject’s behavior harder to model and predict. 

While calculating life’s entropy can be used as a method of self-reflection on the routines (or ruts) 

in one’s life, it can also be used to compare the behaviors of different demographics. Figure 16 

shows the average weekly entropy of each of the demographics in our study, based on her 

location {work, home, no signal, elsewhere} each hour. Average weekly entropy was calculated 

by drawing 100 samples of a 7-day period for each subject in the study. No surprise to most, the 

Media Lab freshman undergraduates are the most entropic of the group. The freshmen do not 

come into the lab on a regular basis and have seemingly random behavior with ( ) 47.3H x =   

(the entropy of a sequence of 168 random numbers is approximately 60). The graduate students 

(Media Lab incoming, Media Lab senior, and Sloan incoming) are next most entropic with 

{ }( )  44.5, 42.8, 37.6H x =  respectively. Finally, the Media Lab faculty and staff have most 

rigidity in their schedules, reflected in their relatively low average entropy measures, 

{ }( ) 31.8, 29.1H x = . 
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Figure 16.  Entropy, H(x), was calculated from the {work, home, no signal, elsewhere} set of 
behaviors for 100 samples of a 7-day period. The Media Lab freshmen have the least predictable 
schedules, which makes sense because they come to the lab on a much less regular basis.  The staff 
and faculty have the most least entropic schedules, typically adhering to a consistent work routine. 

One similarity between the different demographics shown above is the clear role time plays in 

determining user behavior. To account for this, we have developed a simple Hidden Markov 

Model conditioned on both the hour of day ( { }1 1, 2,3..., 24T ∈ ) as well as weekday or weekend 

( { }2 1, 2T ∈ ). Observations in the model initially are simply the distribution of cell towers 

( { }1

1
1 1, ,..., nY CT CT CT∈ ) and Bluetooth devices ( { }2

2
1 1, ,..., nY BT BT BT∈ ). A straightforward 

Expectation-Maximization inference engine was used to learn the parameters in the transition 

model, ( )1|t tP Q Q − , and the observation model ( )|t tP Y Q , and performed clustering in which 

we defined the dimensionality of the state space. The hidden state is represented in terms of a 

single discrete random variable corresponding to three different situations, 

{ },  ,  Q home work other∈ . After training our model with one month of data from several 

subjects we were able to provide a good separation of clusters, typically with greater than 95% 

accuracy. Examination of the data shows that non-linear techniques will be required to obtain 



72 

 

significantly higher accuracy.  However, for the purposes of this chapter, this accuracy has 

proven sufficient.  

 

Figure 17. A Hidden Markov Model conditioned on time for situation identification. The model was 
designed to be able to incorporate many additional observation vectors such as friends nearby, 
traveling, sleeping, and talking on the phone.  

5.1.2 Life Log 

The last several years have seen search engine companies such as Google, MSN Search, and 

Yahoo reinvent themselves from companies that simply perform optimized queries on cached 

web content, to multimedia search engines for all types of content including images, email, and 

even files on users’ personal computers. With Google’s recent acquisition of Blogger, Yahoo’s 

Blog Directories, and MSN Spaces, it is clear that logging and mining the content from users’ 

blogs (web diaries) has become a major priority for search industry. However, while many 

‘bloggers’ relish the opportunity to transcribe and publish the minutia of their lives, most people 

don’t take the time to write such diaries.  

Nevertheless, simply because most people do not want to spend time manually logging daily 

experiences does not imply that the logs themselves are undesired. In 1945, Vannevar Bush laid 

out his vision for the “memex” [Bush (1945)], a device that records every detail of human 

memory and facilitates simple search and retrieval of experiences. While technically infeasible in 

his era, with the advent of wearable sensors and large amounts of disk space, many researchers 

today have begun pursuing their own version of the memex [Clarkson (2002), Vemuri (2004), 

Gemmell (2005)].  
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In collaboration with Mike Lambert, we have created an interactive, automatically generated 

diary application that enables users to query their own life (i.e., “When was the last time I went 

out on the town with Mike? Where were we? Who else was there? When did I get home?”) .  

Labels for locations can be input by the user through the web interface but are also learned from 

the phone application itself. If a user spends a significant amount of time in a specific tower, the 

phone vibrates and prompts the user to name the location or situation. Examples of user input 

names include “Media Lab, My Dorm, Mike’s Apartment, Club Downtown, etc.” 

The original system was Flash-based with a LISP server backend and processed raw text logs 

from the phones. The client was written in ActionScript, which limited the scalability and 

interaction potential of the application. The current version of LifeLog has been redesigned in 

Java to provide much faster load times and easier navigation [Lambert (2005)] and is shown 

below. 
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Figure 18. LifeLog - automatic diary generation. LifeLog provides a visualization of the data from 
the Reality Mining phone logs and inferences. It has also incorporated the ability to perform “life 
queries,” allowing the user to search through previous events and experiences. 

5.1.3 Conversation Gisting from Context and Common Sense 

Conditioning on the location and situation information discussed above, it is possible to get a 

much better interpretation of other types of data gathered from the user. In collaboration with 

Push Singh, we have combined this contextual information from the phone with noisy speech 

recognition transcripts, and a database of commonsense information called OMCSNet, in an 

effort capture the ‘gist’ or topic of a subject’s conversation. While traditional speech-recognition 

rates for conversational speech are typically well under 40%, by conditioning the inference with 

knowledge that the conversation is taking place in a restaurant and some commonsense facts 
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about what typically goes on in restaurants, we will show that it is possible to extract the topics of 

many conversations.  

5.1.3.1 Common Sense Reasoning 

For many applications, it can be quite valuable to combine sensor data on human behavior with 

higher-level, propositional knowledge about day-to-day problems and work patterns. We have 

found that this task can be greatly aided by using commonsense knowledge [Singh (2002)]. For 

instance, by combining information from the audio stream and from other available contextual 

cues with commonsense knowledge about the activities people engage in and the topics they care 

about, we can infer a clearer picture of the content of conversations and the context of their 

participants [Eagle et al. (2003), Lieberman & Liu (2002)].  

We make use of OMCSNet, a large-scale semantic network built at the Media Lab by aggregating 

and normalizing the contributions from over 10,000 people from across the web [Singh (2002)]. It 

presently consists of over 250,000 commonsensical semantic relationships of the form ‘a printer 

is often found in an office,’ ‘going to a movie requires buying a ticket,’ and so forth. OMCSNet 

contains a wide variety of knowledge about many aspects of everyday life: typical objects and 

their properties, the effects of ordinary actions, the kinds of things people like and dislike, the 

structure of typical activities and events, and many other things. OMCSNet uses a hybrid 

knowledge representation strategy where individual concepts are represented linguistically 

(lexically and phrasally) and are related by a small set of about twenty specific semantic 

relationships such as LocationOf, SubeventOf, HasEffect, and so on.  

Our system’s goal is to infer the ‘fine grained topic,’ or gist, of the conversation. A gist is the 

class of event that most accurately summarizes the current subject of the conversation. For 

example: buying a ticket to a baseball game, looking for a restaurant, scheduling a meeting, and 

canceling a meeting. These gists are represented within OMCSNet as simple verb phrases. For 

our set of target gists, we use the 700 most richly defined situational aspects within OMCSNet 

(those for which at least 10 facts are asserted). One feature that distinguishes commonsense 

reasoning from other forms of reasoning is that it involves making inferences using many 

different kinds of knowledge: about objects, events, goals, locations, and so forth. Accordingly, 
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our system uses a probabilistic model that incorporates different types of knowledge, as well as 

contextual data from the mobile phones.  

5.1.3.2 Inference in OMCSNet  

Inference over the OMCS network can be done with varying levels of complexity, ranging from 

simple network analysis metrics to probabilistic modeling using Bayesian networks. Before the 

inference, the transcriptions are preprocessed to reduce the noise of the speech recognition engine 

and improve inference performance. The transcriptions are first lemmatized and filtered for stop 

words (such as ‘like,’ ‘the,’ ‘a,’ etc.). A second filtering process is then performed using a 

clustering metric to reduce the number of weakly connected words. These outliers, words with 

very sparse links to the rest of the transcription, are removed from the data set. By flattening the 

networks of the different relationship types, a bipartite network can be formed to incorporate all 

ties from words to gists. The probability of a specific gist can be modeled as proportional to the 

gist’s links to the selected words:  
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where ik  is the number of links between a gist, ig , and the observed transcript, and G is the 

number of potential gists (approximately 700). This method is capable of identifying a small 

group of potential gists, frequently with the ‘correct’ one dominating the others.  

Once the probable topics of conversation have been identified and ranked, contextual information 

about the conversation is incorporated into the model. In many instances, information such as 

location or participant identity can identify the gist from the small subsection of topics. In our 

initial tests we incremented a gist’s score for each of its links to a keyword related to the given 

context. 

5.1.3.3 Experiments  

We ran a series of 20 interaction experiments on speech segments ranging from 50 to 150 words 

covering a wide range of topics. Conversational context was limited to location. Using the 

method described above, a ranking of the top ten gists for each interaction was created. The 
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model gave a correct gist the number 1 ranking in 40% of the tests. In 70% of the tests, a correct 

gist was one of the top-ranking three. However in 25% of the tests, a correct gist was ranked 

outside the top ten.  

As an example to illustrate the functioning of the system, in one test we captured conversations 

from the student center cafeteria mapped as ‘restaurant.’ Using words alone produced a useful 

result, but using words along with the contextual information to condition the model greatly 

improved our results:  

Actual situation: Deciding what to get for lunch in the cafeteria.  

Automatic transcription: Store going to stop and listen to type of its cellular and fries he backed a bill in the 
one everyone get a guess but that some of the past like a salad bar and some offense militias cambers the site fast 
food them and the styrofoam large chicken nuggets son is a pretty pleased even guess I as long as can’t you don’t 
have to wait too long its complicity sunrise against NAFTA pact if for lunch.  

Automatically selected keywords: Wait type store stop salad past lunch long long listen large fry food fast 
chicken cellular bill big bar back  

Without Location Context With Location Context 
5 talk with someone far away 27 eat in fast food restaurant 
5 buy beer 21 eat in restaurant 
5 Eat in restaurant 18 wait on table 
5 eat in fast food restaurant 16 you would go to restaurant because you 
5 buy hamburger 16 wait table 
4 go to hairdresser 16 go to restaurant 
4 wait in line 

 
15 know how much you owe restaurant 

4 howl with laughter 12 store food for people to purchase 
4 eat healthily 

 
11 sitting down while place order at bar 

4 4 play harp 11 cook food 

Table 5 Gist classification with and without location information from the phone; the numerical 
score is the number of links to the gist. By biasing the classifier with the fact that the subject is in a 
restaurant, it becomes much easier to infer the topic of conversation from noisy transcripts. 

5.2 Dyadic Inference 

In the previous section we have showed how information regarding a user’s location can be used 

for an automatic diary system or to generate better inferences about conversation topic. In this 

section we will explore the possibilities associated with logging not only information about a 

user’s physical environment, but also the surrounding social environment. As discussed 

previously, repeated Bluetooth scans of the vicinity provide information about the subjects within 

ten meters of the user. We will show that this information can be used to establish ‘human 
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landmarks,’ people who are strongly correlated with a particular location. When this proximity 

information is also coupled with temporal and contextual information, it becomes possible to 

infer relationship between members of a given dyad. 

5.2.1 Human Landmarks 

As shown in Figure 6 and Figure 20, there are people whom users only see in a specific context 

(in this instance, at work). If we know the user is at work, information about the time of day, and 

optionally the location within the building (using static Bluetooth devices), can be used to 

calculate the probability of that user seeing a specific individual by the straightforward 

application of Bayes’ rule.  

In previous work in the Computer Supported Cooperative Work (CSCW) community, there has 

been an emphasis on mobile calendar applications that access everyone’s calendar and can 

suggest appropriate times to schedule a meeting scheduling [Beard et al. (1990), Roth and Unger 

(2000)]. In contrast to this work that relies on each user keeping his or her calendar up-to-date, 

we can generate inferences about whether a person will be seen within the hour, given the user’s 

current context, with accuracies of up to 90% for ‘low entropy’ subjects. These predictions can 

inform the user of the most likely time and place to find specific colleagues or friends. We 

believe that the ability to instigate casual meetings would be of significant value in the workplace. 

We must also remember, however, that the ability to predict people’s movements can be put to 

less savory uses. Careful consideration must be given to these possibilities before providing free 

access to such data. 

5.2.2 Relationship Inference 

In the first part of this chapter, we discussed how information about location and proximity can 

be used to infer a user’s context. In much the same way, knowledge of the shared context of two 

users can provide insight into the nature of their association. For example, being near someone at 

3pm by the coffee machines confers different meaning than being near her at 11pm at a local bar. 

However, even simple proximity patterns provide an indication of the structure of the underlying 

friendship network, as shown in Figure 19. The clique on the top right of each network are the 
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Sloan business students while the Media Lab senior students are at the center of the clique on the 

bottom left. The first year Media Lab students can be found on the periphery of both graphs. 

        

Figure 19. Friendship (left) and daily proximity (right) networks share similar structure. Blue circles 
represent incoming Sloan business school students. Red triangles, orange diamonds and white 
squares represent the senior students, incoming students, and faculty/staff/freshman at the Media 
Lab. 

We have trained a Gaussian mixture model [Duda et al. (2001)] to detect patterns in proximity 

between users and correlate them with the type of relationship. The labels for this model came 

from a survey taken by all of the experimental subjects at the end of two months of data 

collection (some users came late to the study but were included anyway).  The survey asked with 

whom they spent time, both in the workplace and out of the workplace, and whom they would 

consider to be in their circle of friends. We compared these labels with estimated location (using 

cell tower distribution and static Bluetooth device distribution), proximity (measured from 

Bluetooth logs), and time of day.   

Workplace colleagues, outside friends, and people within a user’s circle of friends were identified 

with over 90% accuracy, calculated over the 2000 potential dyads.   Initial examination of the 

errors indicates that the inclusion of communication logs combined with a more powerful 

modeling technique, such as a Support Vector Machine [Burges (1998)], will have considerably 

greater accuracy. 

Some of the information that permits inference of friendship is illustrated in Figure 20.  This 

figure shows that our sensing technique is picking up the commonsense phenomenon that office 

acquaintances are frequently seen in the workplace, but rarely outside the workplace.  

Conversely, friends are often seen outside of the workplace, even if they are co-workers.  
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Determining membership in the ‘circle of friends’ requires cross-referencing between friends: is 

this person a member of a cluster in the out-of-office proximity data?   

 

Figure 20. Proximity frequency data for a friend and a workplace acquaintance. The top two plots 
are the times (time of day and day of the week, respectively) when this particular subject encounters 
another subject he has labeled as a “friend”. Similarly, the subsequent two plots show the same 
information for another individual the subject has labeled as “office acquaintance.” It is clear that 
while the office acquaintance may be encountered more often, the distribution is limited to weekdays 
during typical working hours. In contrast, the subject encounters his friend during the workday, but 
also in the evening and on weekends. 
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Friends Not Friends  

avg std avg std 

Total Proximity 
(minutes / day) 

72 150 9.5 36 

Saturday Night 
Proximity (minutes / 

week) 

7.3 18 .20 1.7 

Proximity with no 
Signal (minutes / day) 

12 20 2.9 20 

Total Number of 
Towers Together 

20 36 3.5 4.4 

Proximity at Home 
(minutes / day) 

3.7 8.4 .32 2.2 

Phone Calls / day        .11 .27 .001 .017 

Table 6. Statistics correlated (.25<R<.8, p<.001) with friendship generated from sixty subjects 
(comprising 75 friendships) who work together at the Media Lab 

5.3 Modeling Teams & Organizations 

By continually logging and time-stamping information about many collated individuals’ activity, 

location, and proximity to other users, the large-scale dynamics of collective human behavior can 

be analyzed. Furthermore, a dataset providing the proximity patterns and relationships within 

large groups of people has implications within the computational epidemiology communities, and 

may help build more accurate models of airborne pathogen dissemination, as well as other more 

innocuous contagions, such as the flow of information. 

In the previous section we showed that Bluetooth-enabled mobile phones can be used to discover 

a great deal about the user’s context and relationships.  In this section we will extend this base of 

user modeling to explore modeling complex social systems.  We will provide several illustrative 

examples how this data can be used to learn more about both team and organizational dynamics.  
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5.3.1 Team Dynamics 

By continuously logging the people proximate to an individual, we are able to quantify a variety 

of properties about the individual’s work group. Although most research in networks assumes a 

static topology, proximity network data is extremely dynamic and sparse. While we go into in-

depth analysis of the dynamics of these networks in Chapter 4, in this section we will compare 

aggregate statistics between two different research groups at the Media Lab in an attempt to gain 

insight into fundamental characteristics of the research groups themselves. 

      

  

Figure 21. Proximity network snapshots for a research group over the course of one day.  In this 
example, if two of the group members are proximate to each other during a one-hour window, an 
edge is drawn between them. The four plots represent four of these one-hour windows throughout 
the day at 10:00, 13:00, 17:00, and 19:00. We have the ability to generate these network snapshots at 
any granularity, with windows ranging from five minutes to three months. 
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Figure 22. Proximity Network Degree distributions between two groups. The left-most plot 
corresponds to the Human Dynamics group’s degree distribution (i.e., the number of group members 
each person is proximate to over an aggregate of network snapshots). The second left-most plot is 
simply zoomed-in on the tail of the previous plot’s distribution. Likewise, the two right-most plots are 
of the Responsive Environments group’s degree distribution. 

In Chapter 4, we showed data indicating that a subject’s satisfaction with his research group is 

closely tied to the number of friendship ties he has within the group.  However, literature on 

teams also emphasizes the fact that not only does the number of ties among teammates matter, but 

also the pattern of those ties is important.  Starting with the groundbreaking experiments in the 

1950’s and 1960’s by Bavelas, Leavitt and colleagues at the Group Networks Laboratory at MIT 

[Leavitt (1951)], researchers have focused on the issue of centralization: the extent to which ties 

form a hub-and-spoke pattern, with one team member serving as the central sender and recipient 

of messages.  The research suggests that the benefits of centralization depend upon the nature of 

the task.  When the task is complex, teams with decentralized communication patterns outperform 

teams with centralized communication patterns [Cummings & Cross (2003), Sparrowe et al. 

(2001)].  What conditions promote the emergence of a centralized pattern of ties?  Two 

experimental studies have addressed this question and found that a centralized pattern is more 

likely to arise on teams assigned to relatively high stress conditions [Argote et al. (1989)] or 

relatively low complexity tasks [Brown & Miller (2000)].  

While each research group at the Media Lab is centralized around a faculty director, the 

proximity networks are not reflective of this static organizational structure. In many instances, the 

proximity network’s degree distribution is indicative of a hub-and-spoke formation; however, the 
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roles that are played within this structure are not static. Individuals that are hubs during one 

period of time fluidly exchange places with other team members on the periphery of the 

proximity network. This type of dynamic may be characteristic of the underlying nature of 

research groups at the Media Lab. As deadlines approach for specific individuals, they begin to 

spend more time in the Media Lab and increasingly rely on support from the rest of the group. 

Upon completion of a project, they resume their normal routines and can provide similar support 

to others. As will be discussed in the next section, this pattern of behavior has been shown to 

vanish when the entire group (or organization) is working towards the same deadline. 

5.3.2 Organizational Modeling & Rhythms 

Organizations have been considered microcosms of society, each with its own culture and values 

[Wertheim (2003)]. Similar to society, organizational behavior often shows recurrent patterns 

despite being the sum of the idiosyncratic behavior of individuals [Begole et al. (2003)]. In this 

section we explore the ramifications of the ability to quantify the dynamics of behavior in 

organizations in response to both external (stock market performance, a Red Sox World Series 

victory) and internal (deadlines, reorganization) stimuli. 

5.3.2.1 The Need for Better Organizational Models 

Over time, the Reality Mining data can be fine-tuned for studying, tracking, and - perhaps most 

importantly - predicting the dynamics of a particular social network. Recently, the CEO of a 

multimillion-dollar manufacturing company became interested in the technology as a means to 

quantify workplace collaboration. Like many organizations, his company suffers from the “silo 

syndrome”, ie: people from different departments tend to keep to themselves, leading to 

inefficiencies and missed opportunities. 

To address that problem, the CEO had tried a number of initiatives, for example, having dozens 

of people from marketing switch offices with their counterparts in engineering; however, he 

realized that he did not have a clear understanding about how those changes actually affected the 

organization as a whole. The company had conducted extensive surveys, but the data only 

provided a snapshot of the current social network. Instead, the CEO said he wanted “footprints in 

the sand” to understand the dynamics of the network topology. With such information, he could 

then determine signature effects indicative of a successful (or unsuccessful) initiative. 
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Augmenting his existing data collection methods with data from unobtrusive mobile phones could 

help capture exactly those types of continuous dynamics.  

5.3.2.2 Organizational Rhythms: Patterns in Aggregate Behavior 

From the proximity data, we first extract adjacencies for each scan and then infer ongoing 

proximity so as to annotate each edge with an initiation and termination time. At the time of 

writing, we are not aware of any other network data set with such a large amount of temporal data 

or one with such fine granularity. Thus, this data set provides a rich opportunity to explore both 

temporal dynamics and the quality of our analytic tools. Here we focus on the latter.  

Broad-Scaled Dynamics Given the initiation and termination times of each edge, the difference 

gives the edge’s temporal persistence. Here we restrict our analysis to the 24,092 undirected 

subject-subject adjacencies between 01 October 2004 and 31 October 2004 of the 66 subjects 

who work in the same building at MIT. Figure 23 illustrates the inverse cumulative persistence 

distribution ( )P x X>  (in minutes) for both two weeks within and the full month of October. 

Unsurprisingly, the weekly and monthly distributions are largely similar, with minor variations 

far out in the tail, i.e., for persistence greater than 400 minutes, suggesting a system largely in 

equilibrium. The typical duration of proximity is relatively small, being only 22 83.  minutes, 

while there are several (three) edges which persist for more than 1440 minutes (24 hours). The 

broadness of these distributions demonstrates that the network’s topology evolves at a wide 

variety of time-scales, and we believe such a distribution may be typical of many real world 

networks. Indeed, although not well-motivated for our data set, a recent study found a power-law 

distribution of relationship lengths [Holme (2003)] when a relationship is defined to continue 

from the time of first interaction to the time of last interaction.  
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Figure 23. The distribution of the persistence of edges in the network, shown as an inverse 
cumulative distribution on log-log axes, for two week during and the full month of October for the 
core 66 subjects. Clearly, the network topology is evolving over a wide distribution of time-scales. 
The blue and red lines correspond to the week leading up to and the week of (respectively) the Media 
Lab’s ‘sponsor week’. During these weeks, the Lab’s behavior is characterized by periods of 
extended proximity. 

During October 2004, the seventy-five Media Lab subjects had been working towards the annual 

visit of the Laboratory’s sponsors. Preparation for the upcoming events typically consumes most 

people’s free time and schedules shift dramatically to meet deadlines and project goals. It has 

been observed that a significant fraction of the community tends to spend much of the night in the 

Lab finishing up last minute details just before the event. We are beginning to uncover and model 

how the aggregate work cycles expand in reaction to these types of deadlines. The blue and red 

lines in Figure 23 represent how the aggregate behavior during the period leading up to this 

deadline deviates from the norm with proximity events that have longer duration. The 

phenomenon can also be seen in Figure 24, a time series of the maximum number of links in the 

Media Lab proximity network during every one-hour window. It can be seen that the number of 

links in the Media Lab proximity network remained significantly greater than zero during the 
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third week of October and in early December, representing preparation for the large Media Lab 

sponsor event and MIT’s finals week. A Fourier transform (Figure 25) of this times series 

uncovers two fundamental frequencies, the strongest, not surprisingly, being at 24 hours (1 day), 

and the second at 168 hours (7 days).  

 

 

Figure 24. Proximity Time-Series and Organizational Rhythms. The top plot is total number of edges 
each hour in the Media Lab proximity network from August 2004 to January 2005. When a discrete 
Fourier transform is performed on this time series, the bottom plot confirms two most fundamental 
frequencies of the dynamic network to be (not surprisingly) 1 day and 7 days.  

 

 

Figure 25. A discrete Fourier transform of the time-series of proximity edges shown in Figure 24. It is 
clear that the strongest frequency is at 24 hours, while the second strongest is at 168 hours – 
corresponding to exactly seven days, or one week.  

24 hrs 
1/.143 = 168 hrs  (7 days)
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5.3.2.3 The Future Organizational Modeling: Simulation 

While we have developed technology that can be immediately applied to the problem of the CEO 

interested in better quantifying the ramifications of a reorganization, it may be possible to predict 

how a proposed change affects an organization before any action is taken. After logging extensive 

amounts of data on the interactions between employees, inference can be preformed to generate 

the likely set of actions of an individual given a specific situation. When this inference is 

performed in aggregate, it may be possible to predict the outcome of certain initiatives, such as 

moving half of the marketing department into offices within the engineering section of the 

company.  While impossible today, the Reality Mining data could lead to the type of analysis that 

would enable the CEO to run various “what if” virtual experiments to determine her most 

effective options before implementing a personnel shift.  

In the next chapter we will introduce a method of behavioral eigendecomposition that can be used 

to generate models of likely behavior for individuals and groups. Although there is still much 

work to do before an accurate simulation of organizations can be realized, capturing this rich, 

continuous interaction data is a critical first step towards this goal.  
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Chapter 6 Eigenbehaviors 

Building models of long-term human behavior has been difficult due to the lack of continuous, 

rich data, as well as the perceived complexity of an idiosyncratic individual. Additionally, 

traditional Markov models work well for specific set of behaviors, but have difficulty 

incorporating temporal patterns across different timescales [Clarkson (2002)]. We present a new 

methodology for identifying the repeating structures underlying typical daily human behavior. 

These structures are represented by the principal components of the complete behavioral dataset, 

a set of vectors of characteristic behaviors we have named eigenbehaviors.  

An individual’s behavior over a specific day can be approximated by a weighted sum of his or her 

primary eigenbehaviors. When these weights are calculated halfway through a day, they can be 

used to predict subsequent behaviors with accuracies for some users of over 90%. This is not only 

useful as a predictive tool, but also as a method of filling in gaps in the data set when the user 

turned the phone off. Additionally, groups of interacting people can be clustered into different 

“behavior spaces” spanned by a set of their aggregate eigenbehaviors. We will show that these 

behavior spaces can be used to identify the group affiliations of an individual through a simple 

mathematical transformation described in section 6.3.2. 

6.1 Overview 

Human life is inherently imbued with routine across all temporal scales, from minute-to-minute 

actions to monthly or yearly patterns. Many of these patterns in behavior are easy to recognize; 

however, some are more subtle. Although many of life’s patterns can be modeled as a Markov 

process, whereby the future state depends only on the current state and observational data, these 

types of models have difficulty capturing correlations that span beyond several time slices. For 

many users, sleeping late in the morning appears to be correlated with going out that evening – a 

hard pattern to recognize when using traditional models that are highlighted after an 

eigendecomposition of the same behavioral data. As described in detail in Section 906.2, to 

capture these characteristic behaviors, we compute the principal components of behavioral data 

over a set of days and people. We find that these principal components are a set of vectors that 

span a ‘behavior space’ and have commonalities with other similar subjects. These vectors are the 
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eigenvectors of the covariance matrix of behavior data and represent a set of features that 

characterizes the variation between people. Each person’s behavior data (such as the type shown 

in Figure 26) contribute in some way to these eigenvectors; and when they are plotted, it is clear 

that the largest ones are correlated with a type of behavior, such as sleeping in late and going out 

on the town. A linear combination of the eigenbehaviors of a group of people can accurately 

reconstruct the behavior of each individual in the group. However, the behavior of most people 

(especially if they work in a co-located group) can be approximated by using only the ‘top’ 

eigenbehaviors – the ones that have the largest eigenvalues and account for the largest amount of 

variance in the set of people’s behaviors. How well these top eigenbehaviors can approximate an 

individual’s behavior depends on how similar the individual’s behavior is to the collective. 

While behavior is perhaps not as characteristic a signature of an individual as a face, many 

analogies hold between the analysis of an individual’s behavior and his facial features.  Just as 

digital imaging created a wealth of data to train and test facial analysis tools, the explosive 

growth of mobile phones is beginning to enable much more comprehensive computational models 

of complex human behavior.  In machine vision and computer graphics, eigenrepresentations 

have become one of the standard techniques for many tasks. They are used in face and object 

recognition [Turk and Pentland (1991)], shape and motion description [Pentland and Sclaroff 

(1991)], and data interpolation [Pentland (1992)], and computer animation [Pentland and 

Williams (1989)].  More recently they have been used in a wide variety of robotic and control 

applications.    

6.2 Computing Eigenbehaviors 

We initially characterize person I with location data of the type presented in Section 5.1.1, B(x,y), 

a two-dimensional D by 24 array of location information, where D is the total number of days that 

person I has been in the study. B contains n labels corresponding to behavior, in our case these 

labels are {Home, Elsewhere, Work, No Signal, Off}. To perform the analysis, we transform B 

into B’, a D by 24*n array of binary values, shown in Figure 26. 
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Figure 26. Transformation from B to B’ for data from Subject 4. The plot on the left corresponds to 
the subject’s behavior over the course of 113 days for 5 situations. The same data can be represented 
as a binary matrix of 113 days by 24 multiplied by the 5 possible situations. 

For these experiments we use D=100 days and n=5, so that the dimensionality of vector B’ is 

500. This vector represents an individual’s behavior over a single day and can be represented by a 

point in a 500-dimensional space. A set of D days can then be described as a collection of points 

in this large space. 

Due to the significant amount of similar structure in most people’s lives, days are not distributed 

randomly though this large space. Rather, they are clustered, allowing the group to be described 

by a relatively low dimensional ‘behavior space’. This space is defined by a set of vectors of 

dimension 24*n that can best characterize the distribution of people’s behaviors within the 

behavior space and are referred to as eigenbehaviors. The top three eigenbehaviors that 

characterize the individual shown in Figure 26 are plotted in Figure 27. The first eigenbehavior 

corresponds to either a normal day or a day spent traveling (depending on whether the associated 

eigenvalue is positive or negative). The second eigenbehavior has an eigenvalue that is typically 

positive on weekends and negative on weekdays, corresponding to the characteristic behavior that 

sleeping in is correlated with spending that night out somewhere besides home or work. The third 

eigenbehavior is emphasized when the user is in locations with poor phone reception. 
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Figure 27. The top three eigenbehaviors, 1 2 3[ , , ]j j ju u u , for Subject 4. The first eigenbehavior 
(represented with the first column of three figures) corresponds to whether it is a normal day, or 
whether the individual is traveling. If the first eigenvalue is positive, then this eigenbehavior shows 
that the subject’s typical pattern of behavior consists of midnight to 9:00 at home, 10:00 to 20:00 at 
work, and then the subject returns home at approximately 21:00. The second eigenbehavior (and 
similarly the middle column of three figures) corresponds to typical weekend behavior. It is highly 
likely the subject will remain at home past 10:00 in the morning and will be out on the town 
(‘elsewhere’) later that evening. The third eigenbehavior is most active when the user is in locations 
where the phone has no signal. 

Over the course of the Reality Mining study, we have generated a large set of behaviors, 

1Γ , 2Γ , 3Γ ... MΓ , for a group of M  people, where M is approximately 100 and individual i’s 

behavior vector, iΓ , is D by n by 24. Following the same notation as Turk and Pentland, the 

average behavior of the group is 
1

1 M
nnM =

Ψ = Γ∑ . And i iΦ = Γ − Ψ  is the deviation of an 

individual i’s behavior from the mean. Figure 31 shows the different averages for Bluetooth 

device encounters. Principal components analysis is subsequently performed on these vectors 

generating a set M orthonormal vectors, nu , which best describes the distribution of the set of 
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behavior data when linearly combined with their respective scalar values, nλ .  These vectors and 

their corresponding scalars are the eigenvectors and eigenvalues of the covariance matrix of Φ , 

the set’s deviation from the mean. 

1

1 M T
n nn

T

C
M
AA

=
= Φ Φ

=

∑   6-1 

where the matrix [ ]1 2 3, , ,... MA = Φ Φ Φ Φ  .  Each eigenbehavior can be ranked by the total amount 

of variance in the data for which it accounts, which is essentially the associated eigenvalue. 

Figure 28 and Figure 29 show how an individual’s behavior can be reconstructed from the top 

eigenbehaviors. As shown in Figure 30, for ‘low entropy’ individuals, over 75% of the data can 

be accounted by simply the first eigenbehavior. Additionally, if the classes of “No Signal” and 

“Off” are ignored, over 85% of the variance in the behavior of low entropy subjects can be 

accounted for. 

 

Figure 28. Approximation of behavior from Subject 9, a ‘low entropy’ subject. The left-most figure 
corresponds to behavioral approximation using only one eigenbehavior (in Figure 30; it can be seen 
that this approximation is correct over 75% of the time). As the number of eigenbehaviors increase, 
the more accurately can the original behavior be approximated. 
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Figure 29. Besides eigendecomposition and reconstruction of location data shown in Figure 28, it is 
also possible to perform a similar reconstruction on the frequency of Bluetooth devices encountered. 
Approximation using varying number of eigenbehaviors of the frequency of Bluetooth devices 
encountered over the course of 125 days from Subject 23, a ‘high entropy’ subject, is shown in the 
plots above. 

 

Figure 30. Approximation error (y-axis) for a ‘low entropy’ subject vs. a ‘high entropy’ subject as a 
function of the number of eigenbehaviors used (x-axis). Because the time when the phone is turned 
off or has no signal is fairly random, when this information is removed from the behavioral data 
reconstruction accuracies can improve to 85% using a single eigenbehavior. 
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6.3 Eigenbehaviors of Complex Social Systems 

In the previous section we have demonstrated that we can use data from Bluetooth-enabled 

mobile phones to discover a great deal about a user’s patterns of activities by reducing these 

complex behaviors to a set of principal components characteristic of the individual.  In this 

section we will extend this base of user modeling to modeling complex social systems. By 

continually logging and time-stamping information about activity, location, and proximity for 100 

individuals at an academic institution, the large-scale dynamics of collective human behavior can 

be analyzed. The eigendecomposition process we have implemented supports a variety of data 

including a user’s trained transition probability matrix from our conditioned Hidden Markov 

Model, proximity patterns, daily communication activity, motion energy and biometric signals 

(three of the subjects have been wearing BodyMedia units, collecting galvanic skin response 

(GSR), acceleration, and heat-flux). For representation purposes, we will show data related to 

solely Bluetooth proximity events for three groups of individuals: incoming business school 

students, incoming lab students, and senior lab students. Figure 31 shows the mean behaviors for 

each group, jΨ , while Figure 32 depicts the top three eigenbehaviors 1 2 3[ , , ]j j ju u u of each group. 

 

Figure 31. The average number of Bluetooth devices seen, jΨ , for the senior lab students, incoming 
lab students, and incoming business school students. The values in these plots correspond to the total 
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number of devices discovered in each hour of scanning over the course of a day (with time of day on 
the x-axis). 

 

 

Figure 32. The top three eigenbehaviors 1 2 3[ , , ]j j ju u u  for each group, j, comprised of the incoming 
business school students, incoming lab students, and senior lab students. The business school coffee 
break at 10:30 is highlighted in their first eigenbehavior. Comparing the second eigenbehaviors for 
the Media Lab students, it can be seen that the incoming students have developed a routine of staying 
later in lab than the more senior students. 

As expected, the top eigenvector in each of the groups corresponds to the mean. For business 

school students, there is particular emphasis during the school’s coffee breaks at 10:30.  Besides 

this emphasis, the other pattern is simply reflective of the standard course times (nine until noon, 

a lunch break, and the subsequently afternoon courses). The lab students have less of an enforced 

structure on their day. While the entire group of incoming lab students is taking courses, along 

with approximately half of the senior students, these courses can be selected by the students from 

anywhere in the institution and typically are not attended by many other subjects. However, each 

of the lab students has an office within the lab and typically works from there when not in class. 

While the two groups of lab students share virtually identical principal eigenbehavior, the 
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secondary eigenbehaviors are more telling about the differences. It is common knowledge around 

the lab that incoming students tend to get overwhelmed by over-commitments to coursework and 

research leading to late nights at the workplace. This characteristic is emphasized from the 

group’s second and third eigenbehaviors with an emphasis from 20:00 to 2:00.  

6.3.1 Comparing Members of a Group 

When the eigenbehaviors are created from the aggregate behavior of a group of individuals, it 

becomes possible to determine how similar group members are to the mean behavior by just 

seeing how closely their behavior can be approximated by the group’s top M’ eigenvectors. 

Because the Reality Mining dataset contains data for both incoming and senior students, it is 

possible to verify the onset of concordance between the incoming lab students and the rest of the 

laboratory. Likewise it is possible to distinguish between different groups of behavior, such as 

business school students and engineering students. An individual’s behavior ( Γ ) can be projected 

onto the j group’s “behavior space” through the following transformation into the group’s 

eigenbehavior components ( 1 '[ ,..., ]j j
Mu u ) shown in Figure 32. 

( )j j
k k juω = Γ − Ψ   6-2 

for k =1,..., M’ and jΨ corresponds to the mean behavior of the group. jΨ for Bluetooth 

encounters of senior lab students, incoming lab students, and business school students is shown in 

Figure 31.   

These weights form a vector 1 2 3 ', , ,...T j j j j
j Mω ω ω ω Ω =   , which is the optimal weighting scheme to 

get the new behavior as close as possible to the “behavior space”. Each element in the vector 

gives a scalar value corresponding to the amount of emphasis to place on its respective 

eigenbehavior when reconstructing the original behavior Γ . By treating the eigenbehaviors as a 

set of basis behaviors, the vector  TΩ  can be used to determine to which person k  the individual 

is most similar in a particular group,  j. We follow the method of Turk and Pentland by using 

Euclidian distance as our metric for describing similarity. 

22
k

j j
j kε = Ω −Ω   6-3 
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where j
kΩ  are the reconstruction weights for the kth person in group j. Figure 33 shows values for 

jε , the distance between one business school student and his peers. This method can also be 

applied to data from a single individual to determine which days are most like the ongoing one. 

We are starting to use this Euclidian distance metric ε  to help predict the subsequent actions of 

the user. 

 

Figure 33. Values corresponding to jε , the Euclidian distance between Subject 42 and other 
incoming business school students. This distance between two individuals reflects the similarity of 
their behavior. 

6.3.2 Identifying Group Affiliation 

Instead of comparing an individual to people within a group, it is also possible to determine how 

much an individual ‘fits in’ with the group as a whole by determining the distance ε as the 

difference between the projection of the individual onto the ‘behavior space’ of a group, j, and the 

original behavior. We again use Euclidian distance to calculate the difference between the mean-

adjusted behavior, j jΦ = Γ − Ψ , and its projection onto the group’s behavior space 
'

1
jMj j j

b i ii
uω

=
Φ =∑ . 

22 j j
j bε = Φ − Φ   6-4 

When determining the affiliation of an individual, there can be four possible outcomes, as shown 

in Figure 34. The dark gray plane represents the group behavior space, containing any set of 

behaviors that would constitute being part of the group. The first option has the input behavior on 

the behavior space as well as proximate to other individuals, 
3j

Ω , within the behavior space. The 

second example can be approximated accurately by the behavior space, but there are no other 
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individuals in the same area of the space.  Input three appears to have something in common with 

some members in the group’s behavior space, yet contains behavioral elements that cannot be 

reconciled within the behavior space. Lastly, four is a disparate input, near neither the behavior 

space nor any individual in the space. 

 

 

Figure 34. A toy example of group behavior space. Individuals 1 and 2 are on the behavior space and 
can be affiliated with the group. Individual 1 can also be affiliated with the particular clique, 

3j
Ω . 

There is much more distance between 3 and 4 and the behavior space, and therefore their projections 
onto the behavior space do not yield an accurate representation of the two people. 

When classifying users into groups based solely on Bluetooth frequency data as shown in Figure 

29, this approach works reasonably well. Using six eigenbehaviors to define the business school 

behavior space, all twenty-five of the business school students are quite proximate to the behavior 

space. However, as shown in Figure 35, projections of laboratory students are an average of three 

times further from the business school behavior space. This yields a classification accuracy of 

92%. When the behavior space is defined only by the top eigenbehavior, classification accuracy 

remains a respectable 81%.   
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Figure 35. The distance jε between the three groups of students and the business school behavior 
space as defined by its top six eigenbehaviors. This distance metric can be calculated with only a 
small amount of data and can be used to classify individuals into specific demographic behavioral 
groups.   

6.4 Eigenbehaviors and Ubiquitous Computing 

While we have shown that eigenbehaviors can be used effectively for extracting the underlying 

structure in the daily patterns of individuals and groups, they also enable a variety of potential 

applications: 

6.4.1 Usage and Behavior-based Clustering 

Currently handset manufacturers sell the same mobile phone to every demographic, from pre-

teen, to power-executive, to grandmother. If the phones came with preset behavior spaces 

corresponding to different demographics, with only a limited amount of usage data, the phone 

would have the ability to approximate the distance from the user to a given behavior space. By 

classifying the user into a particular space such as “texting teenager”, the phone can harness a 

much greater set of knowledge than what could have been gleaned from only a few days of 

standalone behavioral analysis, no matter how sophisticated. With this type of information about 

the user, the phone should be able to adjust its interface and functionality accordingly [Weld et al. 
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(2003)]. Likewise, these types of clustering can be used in a matchmaking algorithm that 

incorporates both explicit profile information about a user, as well as implicit behavioral data to 

identify proximate individuals the user doesn’t know but probably should [Eagle and Pentland 

(2005)]. 

6.4.2 Eigenbehaviors as Biometrics 

Just as the eigenvalues associated with a set of eigenfaces are somewhat unique signatures of an 

individual’s face, so can eigenbehaviors be used to recognize a specific user by characteristic 

behaviors. Detecting incidents that are far from the user’s behavior space could be useful in a 

warning system for the elderly who have boarded the wrong bus, or an automotive alarm that can 

detect when the owner isn’t behind the wheel. 

6.4.3 Data Interpolation 

A significant problem that occurs when building models from many human subjects is missing 

data. On average we have logs accounting for approximately 85.3% of the time since the phones 

have been deployed. Approximately 5% of this is due to data corruption, while the majority of the 

missing 14.7% is due to the phones being turned off. However, with a set of these characteristic 

eigenbehaviors defined for each user, it now becomes possible to generate a rich synthetic dataset 

from the approximations of the user’s eigenvalues over a particular time window of interest. We 

have shown in initial experiments over 80% accuracy when attempting to generate five-hour 

chunks of location data for low entropy individuals. Similarly, this type of interpolation works 

equally well for behavior prediction.  

6.5 Contributions 

It is inevitable that mobile devices of tomorrow will become both more powerful and more 

curious about their user and his or her context. We have distributed a fleet of one hundred 

“curious” mobile phones throughout an academic campus. We currently have hundreds of 

thousands of hours of continuous human activity data which require fundamentally new 

techniques for analysis. To analyze data of such magnitude, eigendecompositions are useful 

because they provide a low-dimensional characterization of complex phenomena. This is because 
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the first few eigenvectors of the decomposition typically account for a very large percentage of 

the overall variance in the signal. Because only few parameters are required, it becomes easier to 

analyze the individual and group behavior, and thus possible to predict the behavior of the 

individual elements as well as the behavior of the system as a whole.   

These unique properties make eigenbehaviors ideal as a representation of peoples’ daily 

movements, interactions, and their communication behaviors.  The low dimensional 

representation provided by the eigendecomposition will allow us to characterize people quickly, 

match them to similar people, and predict their behavior in the near future.   These capabilities 

will in turn allow us to build interfaces that can accurately guess the users’ preferences, social 

connections, and their daily plans. 
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Chapter 7 Intervention: Social Serendipity 

The explosion of communication technologies has made long-range interactions between 

individuals increasingly easy. Paradoxically this ‘virtual’ shrinking of the world, through constant 

access to contacts across the globe, often isolates us from those in our immediate vicinity.  While 

digital communications have enabled everything from telecommuting to long-distance 

relationships across different continents, they have done little to encourage interactions of co-

located people. However, as mobile phones break computing free of the desktop and firmly root 

itself in daily life, we have an opportunity to mediate, mine, and now even augment our current 

social reality. We are beginning to see advances in communication technology that will enable 

face-to-face connections between strangers that may make a profound impact on our society. In 

this chapter we describe the Serendipity system, an architecture that leverages technology 

designed for communication at a distance to connect people across the room, rather than across 

the country.  

Serendipity leverages the Bluetooth device discovery protocols described earlier to facilitate 

dyadic interactions of physically proximate people through a centralized server. A survey of fifty 

mobile phone users shows that if it becomes possible to instigate introductions to nearby strangers 

with similar interests using their phone, 90% of the respondents will use the service regularly. We 

present such a system in this chapter. 

7.1 The Opportunity 

Today’s social software is not very social. From standard CRM systems to Friendster.com, these 

services require users to be in front of a computer in order to make new acquaintances. 

Serendipity embeds these applications directly into everyday social settings: on the bus, around 

the water cooler, in a bar, at a conference.  

Serendipity consists of a central server containing information about individuals in a user’s 

proximity and several methods of matchmaking. These profiles are similar to those stored in other 

social software programs such as Friendster and Match.com. However, Serendipity users also 

provide weights that determine each piece of information’s importance when calculating a 
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similarity score. The similarity score is calculated by extracting the commonalities between two 

users’ profiles and summed using user-defined weights. If the score is above the threshold set by 

both users, the server alerts the users that there is someone in their proximity who might be of 

interest. The thresholds and the weighting scheme that define the similarity metric can be set on 

the phones and correspond to the existing profile types such as meeting, outdoors, silent mode, 

etc. When it has been determined that the two individuals should have an interaction, an alert is 

sent to the phones with each user’s picture and a list of talking points. 

Once we have quantified the social network amongst the subjects, we then would like to have a 

method for connecting people who aren’t already associates. The Serendipity application was 

developed to facilitate dyadic interactions of two physically proximate people though an 

introduction situated in the immediate social context. A central server contains profiles about 

individuals in a user’s proximity and several methods of matchmaking. These profiles are similar 

to those stored in other social software programs such as Friendster and Match.com; however, 

they can also contain (at the user’s discretion) implicit information about an individual’s sleeping 

schedule, common hang-outs, inferred friendships, even the usage of games like “Snake”.  If a 

user-defined similarity score is above the threshold set by both users, an alert is sent to the phones 

with each user’s picture and a list of talking points. In response to the feedback from an initial 

trial with forty participants and over one hundred introductions, our next version will incorporate 

several other introduction techniques, such as the approach described by Terry et al., which relies 

on a mutual friend to make the introduction [Terry et al. (2002)]. Alternatively, to preserve a 

user’s privacy and to minimize disruption we also have enabled a feature of sending only an 

anonymous text message alert that there is a person nearby who shares similar interests; both 

users must respond “yes” to actuate the dissemination of any personal information. 

7.1.1 Enterprise 

Disconnect with colleagues in the workplace is a widespread syndrome at many companies, but 

“social software” is helping to change that. Social software technologies have the potential to 

dramatically transform the ways in which companies conduct business. But despite the growing 

ubiquity of mobile telephony, few researchers have explored ways in which the handsets might be 

used as a means to foster informal face-to-face communications of co-located colleagues who 

have little, if any, acquaintance with one another.  
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Today, knowledge management is a five billion dollar industry, but despite the benefits of such 

systems, most people interact with the social software in the isolation of their offices. That, 

however, might soon change with the growing popularity of mobile applications that support the 

desire of individuals to affiliate with others. Such technology could enable companies to untether 

knowledge management systems from the desktop so that they can be used in social situations 

where they might be most beneficial: nearby the water cooler, in the hallway, around the coffee 

machine. 

For example, when a critical mass of people in the same group gather together in the lounge, we 

have a setting that automatically “messages” the remaining members of the group that an ad hoc 

meeting may be taking place. These alerts can be for additional aspects of lab life as well. For 

example, it is now possible to send an email alert every time the number of people in the kitchen 

exceeds a threshold. This has turned out to be a good indicator that there is free food.  

Although static employee surveys can be easily analyzed, the output reflects a severely limited 

view of an organization’s social network. We propose that the dynamics of the social network can 

be inferred from proximity data. Additionally, incorporating Serendipity into the workplace could 

instigate synergistic collaborations by connecting people who may be working on similar 

material, or someone who may have related expertise to another employee’s current problem. 

Finally, forming groups based on their inherent communication behavior rather than on a rigid 

hierarchy may yield significant insights to the field of organizational behavior. 

7.1.2 Dating 

The growth of online dating has soared over recent years as the stigma associated with personal 

ads diminishes. Serendipity provides users an alternative to encounters with people that they have 

only seen on a computer screen. Although we need many more users than our current number in 

order to test the efficacy of Serendipity as a dating tool, we are dialoguing with several online 

dating companies about the possibility of integrating a similar system in their own product line 

involving millions of active participants.  
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7.1.3 Conferences 

It has been well established that there is a need for introduction systems at events such as large 

conferences and tradeshows [Borovoy et al. (1998)]. Salesmen can generate their own proximity 

webpages similar to the one described above to publicize their products and expertise (rather than 

interests and photos).  Conference participants can customize their profiles to be connected only 

with individuals who can address their specific area of interest. As we have shown during the 

initial deployment in May, Serendipity can be an effective tool for networking at conferences. 

7.2 Implementation 

Serendipity receives the BTID and threshold variables from the phones and queries a MySQL 

database for the user’s profile associated with the discovered BTID address. If the profile exists, 

another script is called to calculate a similarity score between the two users. When this score is 

above both users’ thresholds, the script returns the commonalities as well as additional contact 

information (at each user’s discretion) back to the phones.  

 

Figure 36. Serendipity at the coffee machine. One of the uses of the service is to increase 
organizational cohesiveness by creating connections between colleagues in different groups within the 
company. 

Feedback. By replying to the introduction message with a number value from one to ten, users 

can give feedback about the value of the introduction. Although this information is currently only 
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being used as guidance for the system designers, it lays the foundation for a future personalized 

matchmaking architecture based on reinforcement learning for each individual user. 

7.2.1 Serendipity & Bluedar 

While we have a client running on all 100 phones, Serendipity depends on having a critical mass 

of users. To expand the number of potential people beyond simply those with a specific model of 

phone, we have deployed Bluedar in many social setting settings on campus (the Media Lab 

coffee machine, the Sloan student lounge, the Infinite Corridor, the Muddy Charles pub…). These 

devices repeatedly scan for any visible Bluetooth device and send back the device type and 

unique hardware address to our server. This enables anyone with a Bluetooth device to participate 

in Serendipity by simply registering the BTID of the device and linking to an online profile. 

When Serendipity detects two people nearby each other at the coffee machine, it sends an 

introduction message to each person’s phone. These introductions are not designed to create 

strong links between individuals, but rather serve as ice-breakers.  These informal interactions 

have been recognized as a valuable source for professional “weak ties” - critical for individuals as 

well as organizations. It has been shown that an individual’s opportunities for upward mobility in 

society are frequently the result of these types of relationships. In organizations, a social structure 

that incorporates extensive weak ties is thought to maximize cohesiveness and adaptability to 

change while encouraging cross-organizational internal collaboration [Granovetter (1983)].  

7.3 User Studies 

Although only started recently, the reactions of the initial users have been overwhelmingly 

positive. The most enthusiastic response has come from the introduction between specific 

engineers and business school students interested in the commercial potential of their research 

projects. There has also been positive response when introducing members of the technical lab to 

each other. Five percent of the subjects have elected not to participate in the matchmaking 

process due primarily to time issues (not wanting to be interrupted) as well as privacy concerns. 
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Figure 37. Serendipity Introduction Messages.  The Serendipity server sends back ‘ice-breaker’ 
messages to two proximate individuals who don’t know each other but probably should. 

7.3.1 Initial Deployment 

Serendipity was initially deployed in early May 2004 at an elite conference consisting of senior 

corporate executives and professors. Personal profiles were created for forty of the conference 

participants who picked up their assigned phone upon arrival in the morning. Over one hundred 

introductions were made over the course of the day, primarily during the intersession coffee 

breaks. As it was the first time the system was deployed, a significant amount was learned about 

these types of situated introductions that helped refine the system in subsequent versions.  

The conference setting necessitated several modifications from our original design of Serendipity. 

Because all the subjects were proximate to each other during the talks, it was necessary to 

develop a method for preventing introductions to be made while the talks were progressing. 

Simply hard-coding the conference break schedule into phones was not advisable due to the 

uncertainty in the talk lengths as well as the fact that it would then also prevent introductions 

between people who both happened to be outside during a particular talk. Instead, we were able to 

use several personal Bluetooth devices of our research group to prevent these unwanted 

introductions. We had volunteers disperse themselves throughout the auditorium each carrying a 

visible Bluetooth device whose name was changed to “BLOCK”. Any of the forty phones inside 

the auditorium during the talks were able to detect at least one of these “BLOCK” devices. When 
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this name was detected, the Serendipity application was paused and no information was recorded 

about devices in proximity or was sent to our server. 

While we succeeded in preventing introductions during the talks when we knew they were not 

appropriate, we had not taken into account the density of people mingling during the breaks. 

Several users complained of receiving multiple introductions to people within only a few minutes 

of each other. This led to a social disruption as one conversation was just getting underway and 

another conversation was initiated. One user solved the problem by simply turning his phone off 

while in conversation and then turning it back on when he was ready to meet someone else. In our 

subsequent version of the software we formalized this feature as “Hidden Mode” and imposed a 

maximum of one introduction every ten minutes.  

 

Figure 38. Executives introduced at the CELab conference with Serendipity. This first rollout of the 
system provided the researchers a chance to collect extensive user feedback that was incorporated 
into later versions of the service. 

Some other surprising results included many users working for large corporations who 

appreciated being introduced to other coworkers in the same company. For a couple of the 

participants, the introduction component of the application was not clear; they did not know what 

the picture messages about people nearby were meant to accomplish. However, besides the 

comments about the disruption of multiple introductions, the initial user feedback was primarily 

positive. Most of the initial subjects did not voice any privacy concerns; however, this turned out 

not to be the case for a longer longitudinal study that was scheduled to last for the duration of the 

2004-2005 academic year. 
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7.3.2 Campus Deployment 

Currently Serendipity is running on the phones of one hundred users on an academic campus. 

Seventy of the users are either students or faculty in the same technical lab, while the remaining 

thirty are incoming students at the business school adjacent to the laboratory. We are currently 

receiving information from the devices regarding the other subjects typically observed over the 

course of the day. The profiles of users from the technical lab are currently bootstrapped from 

information available within their public project directory. Users also have the opportunity to 

input personal information and change any aspect of their profile.  

 

Figure 39. A small portion of the profiles on stored on mobule.net. This service allows users to log in 
and create profiles describing themselves as well as the people with whom they would like to be 
matched. 

7.4 Privacy Implications 

According to a forecast by the International Data Corp., nearly 80% of new mobile phones sold 

will have Bluetooth capability by 2006. If that prediction holds true, applications like Serendipity 

would have the potential to transform dramatically the ways in which people meet and connect 

with each other. As technologies converge, new mobile phones can identify each other with 

Bluetooth and can recreate the functionality of the Lovegety by leveraging the information 

already stored in existing online profiles. For that to happen, though, researchers need to address 
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a number of privacy concerns. Specifically, many people might prefer eating their meals or riding 

an elevator in the silence of their own thoughts, and they could easily take offense at having their 

movements tracked by a Big Brother-like system. 

7.4.1 Privacy trade-offs for matchmaking services 

While a service such as Serendipity collects data on user behavior, it is our hope that users will be 

willing to give up a portion of their privacy in exchange for the ability to connect with relevant, 

proximate people. The popularity of social software, and online dating in particular, shows that 

not only are people willing to provide very detailed information about themselves but are also 

willing to pay (upwards of $50 for some online dating companies) to be matched with others 

nearby. Although we don’t expect that the value of the service will be worth giving up personal 

information for everyone, it is our hope that most people will find Serendipity worth the 

perceived privacy cost.  

Within an organization, the company itself could motivate employees to use the service. 

Employees might, for example, be compensated (in financial or other terms) for playing active 

roles as intermediaries. Already many companies offer small bonuses (or “finder’s fees”) to 

employees who refer their friends and acquaintances to fill certain jobs at their organizations. 

Such approaches could help applications like Serendipity gain widespread acceptance within a 

corporate setting.  

Obviously, an application like Serendipity introduces a significant number of privacy concerns, 

particularly if deployed outside of a carefully controlled experiment with human subjects 

approval. It is clear these privacy implications need to be reviewed in extensive detail before 

releasing this service to the general public. In the research project at MIT, all subjects will have 

given their explicit consent to participate and will know that, when their device is consciously 

turned to “visible” mode, others will be able to detect their presence. If users want to prevent their 

phones from logging data, they could simply choose the “invisible” mode. (But, of course, if 

everyone were to do so for extended periods of time, then that would defeat the whole purpose of 

the function.) In addition, centralized (instead of peer-to-peer) control helps ensure that people 

share only the information that they want to share. With Serendipity, a server helps mediate 

which people have access to certain data. A user might, for example, specify that certain pieces of 
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information be shared only with those who have the same interests. Or the user could specify a 

hierarchical level of sharing (with friends, for instance, but not with friends of friends).  

BlueAware / Bluedar. While all subjects in our experiment will have given their explicit consent 

to participate, data is also being collected about devices carried by people who are not directly 

participating in the experiment. However, we are operating under the assumption that when a 

device is consciously turned to ‘visible’ mode, the user is aware and accepting of the fact that 

others can detect his or her presence.  

Serendipity. The privacy concerns involving Serendipity are numerous. Providing a service that 

supplies nearby strangers with a user’s name and picture is rife with liability and privacy issues. 

Utmost care must be made to ensure this service never jeopardizes a user’s expectation of 

privacy. Whether it is through proximity webpages (discussed below), anonymous SMS chat, or 

simply limiting interactions to users within a friends-of-friends trust-network, it is clear that 

Serendipity needs to make as many privacy-protecting tools available as possible in order to 

maintain user diversity, and most importantly, keep everyone safe. 

7.5 Beyond Serendipity 

Serendipity’s main use may not involve any of the previously mentioned applications but rather 

something less expected. Perhaps by leveraging trust networks the system could dramatically 

change the trade-offs of hitchhiking. Additionally, providing notifications of nearby resources 

(e.g., taxis, restrooms), or coordinating mobile platforms with embedded computers (e.g., cars, 

buses) could facilitate other ridesharing and carpooling. 

Bridging social software introduction systems with current mobile phone technology enables a 

diverse suite of applications. Conference participants will be able to find the right people during 

the event; large companies interested in facilitating internal collaboration could use Serendipity to 

introduce people who are working on similar projects, but not within one another’s social circles; 

single individuals could go to a bar and immediately find people of potential interest. 

Proximity Webpages. The application provides the user the option to view any information a 

proximate person has deemed public, regardless of her similarity score. While most interactions 
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instigated by Serendipity require information to be sent to both users, proximity webpages allow 

users to see public profiles of nearby people without disclosing information about themselves.  

Alternate Introduction Mediation Techniques. Although the current matching algorithm 

simply looks at similarity thresholds and scores described above, there are many other methods of 

matchmaking. One such approach described by Terry et al (2002) relies on a mutual friend to 

make the introduction. Such a method can be incorporated into Serendipity by alerting the mutual 

friend rather than the two individuals.  Alternatively, to preserve a user’s privacy and to minimize 

disruption we also have provided a feature of sending only an anonymous text message alert that 

there is a person nearby who shares similar interests; both users must respond “yes” to actuate the 

dissemination of any personal information.  

Human-Machine Interactions. By equipping physical infrastructure with embedded computing 

and a Bluetooth transceiver, a variation on this system can be used to notify human users of 

nearby resources or facilities.  For instance, the system can notify the user of an approaching free 

taxi, or a nearby public restroom. If instead of human users we consider mobile platforms with 

embedded computers (e.g., trucks, buses) we can envision other applications.  For instance, 

busses could wait until passengers from other busses had gotten on-board, or delivery vehicles 

could more efficiently service pickup/drop-off requests.  

Role-Based Access Control (RBAC) is a technique used to assign user permissions that 

correspond to functional roles in an organization [Sandhu et al. (2000)]. By capturing extensive 

user behavior patterns over time, our system has the potential to infer not only relationships 

between users, but also their permissions. For example, if two students working in different labs 

begin Tuesday collaborations at a coffee shop, they would, by implication, be permitted limited 

access to each other’s lab. 

Public Release of Serendipity. While Symbian Series 60 phones have become a standard for 

Nokia’s high-end handsets, they represent a small fraction of today’s Bluetooth devices. We are 

in the final stages of developing a MIDP (Java) version of the BlueAware application that will 

run on a wider range of mobile phones. The final test of Serendipity will be its public launch on 

www.mobule.net. We hope that the application will prove to be popular within the realms 

described above, as well as those unanticipated. 
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Our society is more connected than ever before due to two parallel paradigm shifts in computing: 

movement from desktop to mobile computing and from individual to social software. Mobile 

phones have become standard attire across the globe. In millions of pockets and purses are 

wireless transceivers, microphones, and the computational horsepower of a desktop computer of 

just a few years ago. Today the majority of this processing power goes unused. However, once 

the emphasis of mobile applications shifts towards supporting the desire of individuals to affiliate 

with others to achieve their personal goals, this will soon change. We are catching glimpses of 

introduction services with the advent of online dating and knowledge management, yet the real 

potential of these new applications will be realized by an infrastructure of socially “curious” 

mobile devices, allowing us to untether social software from the desktop and imbue it into 

everyday life. If that were to happen, the technology would finally enable social software to be 

used where it could potentially have the greatest benefits - in social settings. It is our belief that 

the mobile phone market is at a critical tipping point when functionality will shift from the 

traditional telephone paradigm to a much broader social-centric perspective. We hope that this 

work represents a step further in that direction. 
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Chapter 8  Conclusions 

Mobile phones are permeating the globe faster than any other technology in mankind’s history. 

One in six people on Earth are currently carrying one of these “personal computers” in pockets 

and purses, tucked into saris, or even dangling around the neck (as is common for both Japanese 

school girls and African villagers). Perhaps originally purchased as single-use technology much 

like a television or radio, in contrast to those technologies, the functionality of today’s mobile 

phones is continuing to grow. While previous wearable sensors designed to capture data on 

complex social systems have had a limited ability to scale, most people in the Western world 

already have the habit of carrying a mobile phone. We have shown in this thesis that today’s 

mobile phones can be harnessed as a set of wearable sensors providing us detailed behavioral 

data.  

It is inevitable that the mobile devices of tomorrow will become both more powerful and more 

curious about the context of their users. We have distributed a fleet of one hundred curious 

mobile phones within a laboratory and a business school at MIT. These phones have the ability to 

gather continuous, long-term, objective data on virtually an unlimited number of co-located or 

distributed human subjects. We have used this system to collect approximately 300,000 hours of 

daily behavior of 100 co-located people over the course of nine months. From this data have 

emerged a variety of models of different aspects of this complex social system, ranging from the 

individual to the aggregate. Finally, we show how it is possible to repurpose this passive data 

collection hardware to generate additional edges within a complex human network.  

8.1 Privacy Implications 

To some, the privacy implications of this thesis are more salient than any of our results. There are 

inherent connotations with machine perception of human behavior and the George Orwell 

concept of “Big Brother”.  Regardless of whether this is a fair comparison, researchers interested 

in becoming involved with this field should become well versed in the privacy literature.  

Mining the reality of our one hundred users raises justifiable concerns over privacy.   However, 

the work in this thesis is a social science experiment, conducted with human subject approval and 
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consent of the users. Outside the lab we envision a future where phones will have greater 

computation power and will be able to make relevant inferences using only data available to the 

user’s phone. In this future scenario, the inferences are done in real-time on the local device or on 

a user’s personal computer, making it unnecessary for private information to be shared with a 

central system.  

8.1.1 The Dark-Side of Mobile Phones 

The privacy implications of this thesis scare some people, and perhaps with reason. However this 

type of analysis is not going to remain within the confines of academia. For this experiment, each 

of these subjects read and signed a detailed consent form approved by MIT’s Committee on 

Using Human Subjects (COUHES), describing all the types of information we were gathering. 

However, mobile phone service providers have much of the data required to perform many of the 

inferences in this thesis. These service providers are already continuously logging every mobile 

phone user’s communication behavior as well as location from nearby cell towers - and many 

people are not even cognizant of it.   

With a democratic and open society, the argument that privacy concerns can be balanced by 

various benefits of convenience can be plausibly made. However, benevolent governments are 

not guaranteed indefinitely, and putting in place a vast system for information gathering has some 

rather disturbing consequences in a less than benevolent society. It’s interesting to note that there 

are over 300 million people in China who daily carry what is essentially an always-on 

surveillance device, feeding massive amounts of data to a not-so-benevolent government. It still is 

unclear what these particular governments will begin to do with this type of data, and what kind 

of backlash it will have on the user population. 

A pervasive information gathering system could be put to nefarious uses, especially in the hands 

of an unscrupulous government. But while we could (and perhaps should) raise attention to those 

obvious dangers - at the end of the day, having a centralized cellular infrastructure implicitly 

creates such an information gathering system. And if the system exists, why not use it for public 

service applications? Currently society’s use for this new type of data from mobile phones is to 

place an individual at the scene of a crime. If we, as a society, agree that it is acceptable to use 
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this data against an individual, then using it to better support the individual does not appear as 

controversial. 

There does not appear to be a conclusive answer to the question about whether or not the privacy 

concerns surrounding mobile phones outweigh their potential benefits. The case that this thesis 

has tried to make is that assuming we do live in a society (benevolent or not) that does have a 

ubiquitous cellular infrastructure, it makes sense to start thinking about beneficial ways we (as 

engineers / designers / politicians / scientists / ...) can start using the resultant data. 

8.1.2 The Price of Privacy 

In general, companies have found that people are usually willing to relinquish a portion of their 

privacy in exchange for something of (typically surprisingly small) value [Huberman et al. 

(2005)]. Consumers, for example, have been willing to divulge personal information, such as the 

names of their friends and relatives, to receive free gifts or reduced rates for a service. For the 

majority of people, the benefits of paying with a credit card outweigh the perceived intrusion of 

providing a company access to information on the location and content of each purchase.  To 

track the buying behavior of specific demographics, many retail stores issue personalized 

coupons.  Loyalty-reward cards are another example of consumers trading information about their 

shopping behavior for discounts on purchases.  

In the ecommerce space, many web retailers ask customers to ‘log on’ to receive personalized 

recommendations. For most consumers, the personalization that results from logging on to a 

website such as Amazon.com is worth having the enormous amount of data that is generated from 

their visit linked to their identity; this information ranges from the products they browsed, links 

they clicked, to the duration (down to the millisecond) that they spent on each page. Simply a 

look-up of an IP address gives the store information about a web browser’s location. In the mid-

90’s when this information gathering was just becoming broadly deployed, companies began 

testing the limits of what they could do with this information. It turned out that while customers 

didn’t complain about the actual data collection (although it seems reasonable to assume that 

many were unaware it was even taking place), there was a large reaction against sharing this data. 

In one example, Amazon’s early website gave users information such as, “Other people from 

Stanford University also purchased these products …”. While this information was useful to 
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many, the perceived privacy violation led to a vocal group insisting that this type of functionality 

be permanently removed.  

8.1.3 Towards a Privacy Compromise 

This thesis has introduced several applications for this new type of data on a variety of scales 

ranging from individual, to dyad, to group. These different focuses each have their own unique 

privacy implications. While not all of the applications will appeal to the most privacy sensitive 

amongst us, the trade-offs of sharing private information and the potential benefit of an 

application may yield a successful compromise for the most people. 

8.1.3.1 Privacy and the Individual  

For individual applications, such as the automatically generated diary, very little private 

information needs to go beyond an individual’s phone and personal computer. The inferences 

about a user’s context and situation can be completed as a client application rather than by using 

the existing server-based model. Instead of uploading the phone logs to our central server, we can 

send them to a user’s trusted personal computer. This modified application will be able to display 

named locations and the people associated with the phones numbers already in the phone’s 

address book. However, because there is no central repository mapping BTIDs to individual 

names, establishing the identity of the proximate people becomes a more difficult task. Inferring 

these mappings will be addressed in the next section. 

8.1.3.2 Dyadic Privacy Implications 

Using the friendship correlations described in Table 6, it is possible for a phone to infer a 

relationship between its user and another person’s mobile phone. When the next time that 

particular BTID is logged, the phone could open a dialogue box alerting the user that a friend 

with a Bluetooth phone might be nearby. If the user agrees that there is a friend nearby with a 

mobile phone, a list of names from the phone’s address book could present itself and the user 

could select a particular contact to associate the discovered BTID.  
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8.1.3.3 Data Aggregation of the Group 

Inherent to the nature of group behavior analysis is the fact that behavioral data is disclosed. 

While applications such as the six-person research group’s proximity network shown in Figure 40 

would require complete disclosure of proximity data, it may be feasible to collect statistics about 

a larger aggregate while keeping the individual researchers’ identities anonymous. Given an 

adequately large sample size, an individual may be able to compare his behavior with 

organizational averages. Initially, assuming that this aggregate data can be submitted 

anonymously, the dynamics of organizational rhythms can still be analyzed without violating the 

privacy of the individual.   

8.1.3.4 Privacy Guardrails: Context vs. Content 

While compromises can be made regarding particular privacy trade-offs, there are some specific 

societal norms regarding privacy that should always be adhered to. These privacy ‘guardrails’ are 

related to the general public’s expectation of privacy. Data should remain private if there is a 

reasonable expectation that the data is private, and while seemingly circular definition, this often 

relates to content vs. context. The content of interactions, whether they are face-to-face, over the 

phone, or email, typically has the expectation of being private. Just as it is against societal norms 

to eavesdrop on a conversation between two people, so is it not appropriate (or legal in many 

states) to record a conversation unless both parties are formally notified. However context is 

different from content. If two people are talking in an office with the door open, while it is 

unacceptable to stand at the entrance listening to the conversation, it is not socially inappropriate 

to wait outside the office, out of earshot, but still in view of the two people engaged in 

conversation. In this case, by leaving the door open, the two people have acknowledged that their 

context is public information. The public can see that both people are inside the office and 

therefore that contextual information is not private. Similarly, information about approximate 

location and proximity is contextual and carries less of an expectation of privacy. However, while 

content is inherently much more sensitive than context, users should always have the option of 

keeping their contexts private as well. Just as individuals have the right to close their office door 

to establish that their current context is private, they should always have the right to disable the 

logging software on their phone. 
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8.2 Lessons Learned 

By using mobile phones in this way, we’ve generated a massive dataset on complex human 

behavior. This data consists of continuous information about subjects’ location, proximity, and 

communication behavior. While many of the results that came out of this analysis were not 

especially surprising, they nonetheless validate both the technology and the system.  

8.2.1 Mobile Phones & Social Science 

In Chapter 4, we have shown how this data can provide insight into how different demographics 

use the phone’s functionality in different ways. Moving beyond usages patterns, we discuss how 

data collected from phones can augment self-report surveys. We found that the proximity patterns 

of senior students are correlated with their responses to survey questions, and that this is not the 

case for incoming students. Similarly we also showed how objective outcomes such as 

satisfaction with one’s work group are correlated with how often the senior lab members are 

proximate to their friends, while again there is no correlation for incoming students. Looking at 

the communication patterns of two different groups of incoming students, it is clear that there is a 

distinct difference between the social network evolution of incoming business school students and 

their Media Lab counterparts. However, there is still an extensive amount of information that can 

be gleaned from this rich behavioral information. We are planning on ‘cleaning’ the data of 

identifiable characteristics and providing it, along with code for analysis, to researchers from a 

wide range of fields.  

8.2.2 Machine Learning using Cell Tower and Bluetooth Information 

In Chapters 5 and 6, we use this data to uncover regular and predictable rules and structure in 

behavior of individuals, dyads, teams, and organizations. We have introduced a generative model 

that can incorporate multiple data streams from sensors, and, when conditioned on the time of day 

and day of week, can provide a general classification of a particular situation. We developed 

applications that create an automatically generated diary of experiences using the output of this 

model, and even log the topics of previous conversations. Additionally, from eigendecomposition 

of daily behavior, it is possible to uncover specific long-term patterns, such as the fact that 

‘sleeping in’ can be used as a signal that a subject will be out on the town that evening. Through 
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an analysis of contextualized proximity patterns, we have also been able to identify the 

individuals within a subject’s circle of friends. Moving from individual to aggregate proximity 

patterns, we compare the dynamics of two Media Lab research groups and subsequently show 

that proximity network analysis can also provide insight into how the organization responds to 

stimuli such as deadlines. By introducing the concept of a group’s ‘behavior space’, we show it is 

possible to classify an individual’s affiliation to a particular group with very little data. While we 

limited our analysis to only linear techniques, employing non-linear methods is certainly possible 

should the complexity of the data increase.  

8.2.3 Interventions: The Introduction of an Introduction Service 

Chapter 7 introduces a method to make interventions in a real human network with an automatic 

‘introduction’ system, Serendipity, which sends relevant messages to two proximate people 

whom we would like to connect. The system was initially deployed at a conference with forty 

users and was subsequently scaled to the 100 subjects in this experiment. Initial feedback from 

the trial mainly consisted of users expressing that the introduction came too quickly. One user 

simply turned the phone off until he wished to be introduced again. We formalized this feature as 

hidden mode. There has been such a significant positive reaction to Serendipity that we are in the 

process of expanding the service beyond MIT to help people connect with potential dates, 

customers, colleagues, or whomever else they choose.  

8.2.4 Alternate Applications: Contagion Dissemination 

One of the additional application areas for these temporal proximity networks is to model the 

dissemination of a contagion, whether it is an airborne pathogen or a Bluetooth virus. The 

majority of epidemiological models are based on a compartmental, SIR framework; the host 

population is partitioned into those that are susceptible, infected, or immune to a particular 

pathogen [Anderson (1982)]. These deterministic models assume that the rate at which new 

infections are acquired is proportional to the number of encounters between susceptible and 

infected individuals, and leads to an effective reproductive ratio that is dependent on a threshold 

density of susceptibles [Kermack & McKendrick (1991)]. Thus, the reproductive ratio is 

dependent not only on parameters intrinsic to the disease such as latent and infectious periods, but 

also on contacts between infectious and susceptible hosts. However, compartmental models of 
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this kind implicitly assume that the host population is well mixed, such that the probability of 

infection is equal for all. 

Social network structures are clearly not always well mixed, however, and the complexities of 

host interactions may have profound implications for the interpretation of epidemiological models 

and clinical data. Standard mean-field models do not account for heterogeneities of risk between 

individuals due to the finite number, variability, and clustering of social contacts. Studies have 

shown that network structure can significantly affect the processes occurring on social networks, 

including the dynamics and evolution of infectious diseases. Some have investigated the effect of 

network structure on the evolution of disease traits such as infectious period and transmission 

rates, as well as invasion thresholds for epidemics, for example [Read & Keeling (2003)]. Others 

have explored the role of spatial contact structure in the evolution of virulence [van Baalen 

(2002), CDC (2003), O’Keefe & Antonovics (2002)]. 

The accurate quantification of the host contacts, and therefore the associated variability in the 

probability of infection, is clearly of great importance. Hypothetical models are valuable for 

understanding the kind of effect different social network structures would have on disease spread; 

however, we suggest that the proximity information that can be captured with today’s mobile 

phones gives a much more realistic interpretation of human social network dynamics. With 

detailed data on mixing parameters within a social network, epidemiologists will be armed with 

more information to make predictions about our vulnerability to the next SARS, as well as greater 

insight into preventing future epidemics. 

We note that our high resolution dynamic proximity network data have a great potential to 

contribute to the growing body of research on epidemiology from the network perspective, i.e., 

proximity is a major contributing factor in infection. In particular, traditional network 

epidemiology concerns itself with the question of percolation; however, we show here that the 

mean degree does not rise above the threshold for a connected graph 2k = until ∆  is roughly a 

few hours in length. However, information (and pathogens such as mobile phone or biological 

viruses, or even rumors) can obviously still spread by virtue of the sequential nature of the 

adjacency matrices. 



123 

 

However, one of the reasons why this subject has been relegated to future work is due to the 

nature of the particular system. The standard SIR models are able to account for the spread of a 

disease through an entire system; however, with only proximity network information from a set 

number of subjects, it is impossible to model accurately how the contagion would spread outside 

the particular subject group. In order to run an epidemiological experiment with these mobile 

phones, it is therefore critical to select an isolated social system. Epidemiologists have 

recommended social systems such as cruise ships or boarding schools to run the proximity study. 

While these types of closed studies are necessary because of the difficulty of estimating the 

number of potential disease vectors (in this case people) surrounding an individual by the number 

of visible Bluetooth devices, this is not true to estimate the spread of a Bluetooth virus. Indeed 

this dataset represents exactly the network through which a Bluetooth virus would propagate, and 

the first time to our knowledge that such a network has been quantified. 

8.3 Finale 

The work in this thesis should not be thought of as a quest to find a universal equation for human 

behavior; we are not trying to create something whereby it is possible to feed data in, and to have 

emerge an elegant deterministic description of human behavior. Rather, as Ball (2004) notes, 

increased understanding of complex social systems will be actualized by an accumulation of 

examples of how patterns of behavior emerge from the idiosyncratic actions of many individuals.  

This understanding may not only lead us to building applications that better support the individual 

and group, but also better inform the design of organizations, schools, and office buildings so as 

to conform with how we actually behave and enhance and encourage beneficial social 

interactions. 

The examples we have presented include ethnographic studies of devices usage, self-report data 

validation, relationship inference, individual behavior modeling, and group behavior analysis. We 

have discussed issues to do with conducting these next-generation social science experiments, 

including privacy, human-subjects and data validation constraints. However, this is just the 

beginning. It is our hope that this new type of data will inspire research in a variety of fields 

ranging from qualitative social science to theoretical artificial intelligence.  
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In the very near future, social science will become inundated with similarly massive amounts of 

data on individual, dyadic, team, and organizational behavior. This deluge of data will have 

dramatic repercussions on a field that has had the same state-of-the-art data gathering instruments 

for nearly a century. New methods and metrics of analysis will need to be developed to deal with 

the behavioral data collected in the 21st century. And while these new datasets will certainly not 

replace the traditional surveys, we hope this thesis has shown how they can complement self-

report data to enable researchers to ask questions never before possible.   
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