
Mobile User Movement Prediction Using Bayesian
Learning for Neural Networks

Sherif Akoush Ahmed Sameh
Department of Computer Science, Department of Computer Science,
The American University in Cairo, The American University in Cairo,

P.O.Box 2511, Cairo, Egypt P.O.Box 2511, Cairo, Egypt
Email: sameh@aucegypt.edu Email: sameh2@aucegypt.edu

ABSTRACT
Nowadays, path prediction is being extensively examined for use
in the context of mobile and wireless computing towards more
efficient network resource management schemes. Path prediction
allows the network and services to further enhance the quality of
service levels that the user enjoys. In this paper we present a path
prediction algorithm that exploits human creatures habits. In this
paper, we present a novel hybrid Bayesian neural network model
for predicting locations on Cellular Networks (can also be
extended to other wireless networks such as WI-FI and WiMAX).
We investigate different parallel implementation techniques on
mobile devices of the proposed approach and compare it to many
standard neural network techniques such as: Back-propagation,
Elman, Resilient, Levenberg-Marqudat, and One-Step Secant
models. In our experiments, we compare results of the proposed
Bayesian Neural Network with 5 standard neural network
techniques in predicting both next location and next service to
request. Bayesian learning for Neural Networks predicts both
location and service better than standard neural network
techniques since it uses well founded probability model to
represent uncertainty about the relationships being learned. The
result of Bayesian training is a posterior distribution over network
weights. We use Markov chain Monte Carlo methods (MCMC) to
sample N values from the posterior weights distribution. These N
samples vote for the best prediction. Simulations of the algorithm,
performed using a Realistic Mobility Patterns, show increased
prediction accuracy.

Categories and Subject Descriptors
I.2.6 [Learning]: Connectionism and neural nets

General Terms
Algorithms, Performance

Keywords
 Bayesian Network, Neural Networks, Markov Chain, and Monte
Carlo Methods

1. INTRODUCTION
In wireless cellular networks, a user must be able to access
wireless services while he is moving. Therefore, the network must
be able to identify where exactly the user is. This is called
mobility management. If the network can predict where the user
is, then considerable bandwidth can be saved and resources can be
optimized in mobility management. Prediction is regarded as one
of the direct application of artificial intelligent systems. Usually
we have large amount of sensor data that need to be interpreted in
order to extract knowledge from this information. Such
knowledge can be extremely useful to optimize resources and
provide intelligent services. We usually try to learn (extract)
patterns from the available data. Patterns can be associative such
as attributes that occur together, classification such as indication
of a given category or temporal such as sequences that happen
frequently [1]. Prediction attempts to form patterns that permit it
to predict the next event(s) given the available input data.

In this paper, focus is on predicting user movements in wireless
networks. In other words, we would like to predict what are the
next locations the users would probably be given their past
movements. Predicting movements in such domain is essential as
it will enable the network to effectively allocate resources, better
location update procedures and easier location search techniques
[2]. This work can also be extended to even predict what services
the user is expected to use are. Consequently, better quality of
services is provided and the network is able to allocate efficiently
the needed resources not only at the right place but also at the
right time. We want to reduce the number of explicit locations
updates/paging if we can successfully predict where the user is. In
other words, if the system can predict accurately where the user is
roaming, the user does not have to update the network about his
location (location update). Moreover, the core network does not
have to search where the user is (location paging). Therefore we
are reducing the number of overall updates/paging messages
which take considerable network bandwidth. If services that the
user is expected to use are predicted, the network can plan
efficiently resources allocations. This will ensure of course quality
of services provided by the network. It is interesting to experiment
whether services that the user is using are related to his movement
patterns. There are several techniques that can be used in
movement predictions such as Artificial Neural Networks,
Bayesian Belief Networks, Hidden Markov Chains, Dynamic
Belief Networks…etc [1]. Each technique has its advantages and
disadvantages. Our work uses a hybrid technique – Bayesian
Neural Networks that makes use of the pros of Bayesian inference
in Artificial Neural Nets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWCMC'07, August 12-16, 2007, Honolulu, Hawaii, USA
Copyright 2007 ACM 978-1-59593-695-0/07/0008...$5.00.

191

2. BAYESIAN LEARNING for NEURAL
NETWORKS
MLP models are the estimation of the model parameters and
controlling the model complexity. The optimal number of degrees
of freedom in the model depends on the number of training
samples, amount of noise in the samples and the complexity of the
underlying function being estimated. With standard neural
networks techniques, to determine the correct model complexity
and to set up a network with the desired complexity are often
computationally very expensive. Another problem of standard
neural network methods is the lack of tools for analyzing the
results (confidence intervals for the results, like 10 % and 90 %).
Recently Bayesian methods have become a viable alternative to
the older error minimization based approaches. Researchers have
suggested the importance of incorporating human knowledge in
neural networks model to improve their performance. This
knowledge is modeled through prior distribution over Neural
Networks parameters. Bayesian methods use probability to
quantify uncertainty in inferences and the result of Bayesian
learning is a probability distribution expressing our beliefs
regarding how likely the different predictions are. Predictions are
made by integrating all models over this posterior distribution.
The Bayesian learning uses probability to represent uncertainty
about the relationship being learned. Before data is seen, prior
opinions about what the true relationship might be can be
expressed in a probability distribution over the network weights
that define this relationship. After the training data is presented,
the revised opinions are captured by a posterior distribution over
network weights. Network weights that seemed plausible before,
but which do not match the data very well, will now be seen as
being much less likely, while the probability for values of the
weights that do fit the data well will have increased [1]. In
Bayesian data analysis all uncertain quantities are modeled as
probability distributions, and inference is performed by
constructing the posterior conditional probabilities for the
unobserved variables of interest, given the observed data sample
and prior assumptions. According to Bayes:

Where P(paramerters|data) is the posterior probability of
parameters, P(parameters) is the prior probability,
P(data|parameters) is the likelihood and P(data) is a normalization
constant. We want to make use of probability theories in Neural
Networks as it will naturally overcome the possible problems in
traditional learning. One of the major benefits of Bayesian MLP is
that the resulting prediction is an average prediction of possible
MLP solutions weighted by their probability. In other words,
Bayesian MLP returns theoretically all possible solutions and
integrates them out. Traditional MLP can be regarded as specific
solution from the set returned by the Bayesian one. If the inputs of
the network are set to the values for some new case, the posterior
distribution over network weights will give rise to a distribution
over the outputs of the network, which is known as the predictive
distribution for this new case. If a single-valued prediction is
needed, one might use the mean of the predictive distribution, but
the full predictive distribution also tells how uncertain this
prediction is. In Bayesian MLP the output is:

Where P(new data|data) is the solution, P(new data|parameters) is
the traditional MLP function and P(parameters|data) is the
probability of this specific MLP function. The solution is thus
integration over all possible MLP solutions (weights, bias…etc).
Implementing the exact model is one of the biggest problems with
Bayesian methods. Dealing with a complex distribution over
weights is not as simple as finding a single "best" value for the
weights. We have to drawn random samples and average those
samples:

N different samples for possible MLP solutions (weights,
bias…etc) θ. Y new is calculated by taking the mean of the N
different MLP outputs. M represent all parameters defining the
model such as the number of perceptrons in the hidden layer and
the choice of the activation function. In full Bayesian
implementation we have to take into consideration different
models M (varying the number of hidden perceptrons).
Consequently, the final output is also the average of all models M
outputs [4].

Figure 1: Bayesian MLP solution in a regression problem

The previous figure describes the solution of Bayesian MLP
solution in a regression problem. The dots are the data points. The
gray thin lines are N different solutions and the thick solid line is
the average solution. It is easy to spot that the average solution is
smoother that some individual solutions. In case of MLP the
posterior distribution is typically very complex. The integrations
required by Bayesian approach can be approximated using
Markov Chain Monte Carlo (MCMC) methods [6]. An integral μ
= ∫ g(x)p(x) dx can be approximated by MCMC, using a sample of
values x(t) drawn from the distribution p(x)

In the MCMC, samples are generated using a Markov chain that
has the desired posterior distribution as its stationary distribution.
Monte Carlo methods for Bayesian neural networks have been

192

developed by Neal [2]. The posterior distribution is represented by
a sample of perhaps a few dozen sets of network weights. The
sample is obtained by simulating a Markov chain whose
equilibrium distribution is the posterior distribution for weights.
The key idea in MCMC methods is to obtain a sample from the
posterior and then base inference on that sample, for example,
replacing posterior expectations with sample means over the
simulated posterior sample. The main difficulty is MCMC
methods is in generating a sample from the posterior p(θ|D). The
rational is to consider a Markov chain {θn} with state θ and
having p(θ|D) as stationary distribution. The strategy is to start
with arbitrary values θ, let the Markov chain run until it has
practically reached convergence, say after T iterations, and use the
next k observed values of the chain as an approximate posterior
sample A = { θ1, θ2..., θk}. In other words, the state of the chain
after a large number of steps is then used as a sample from the
desired distribution. The quality of the sample improves as a
function of the number of steps. Usually it is not hard to construct
a Markov Chain with the desired properties. The more difficult
problem is to determine how many steps are needed to converge
to the stationary distribution within an acceptable error. There are
several algorithms used to implement MCMC methods such as
Metropolis-Hastings sampling, Hybrid Monte Carlo sampling,
Gibbs sampling and Reversible jump Markov chain Monte Carlo
sampling [6]. The method is exact in the limit as the size of the
sample and the length of time for which the Markov chain is run
increase, but convergence can sometimes be slow in practice [6].

3. EXPERIMENTAL METHODOLOGY
Statistical Bayesian techniques usually require more expert work
than the standard approach, either to devise reasonable
assumptions for the distributions, or to include different options in
the models and integrate over them, but once that is done, the
results are consistently better than with other approaches. There
are several packages available to implement Bayesian Learning
for Neural Networks. We choose MCMCStuff from Helsinki
University (Finland) [3] because it implements all Bayesian
methods for MLP in the Matlab environment. MCMCstuff
toolbox is a collection of Matlab functions for Bayesian inference
with Markov chain Monte Carlo (MCMC) methods. MCMCstuff
toolbox is a collection of Matlab functions for Bayesian inference
with Markov chain Monte Carlo (MCMC) methods [6]. The
MCMC methods for MLP package has been written using Matlab
and C programming languages and works with Matlab versions
6.* and 7.* as a toolbox. The code in this toolbox has been
streamlined and optimized for faster computation. Some of the
most computationally critical parts have been coded in C. This
toolbox provides different sampling methods to implement
MCMC such as Metropolis-Hastings sampling, Hybrid Monte
Carlo sampling, Gibbs sampling and Reversible jump Markov
chain Monte Carlo sampling. We have tested this toolbox for
MLP network in regression problem with Gaussian noise. We
have also tested the same regression problem with conventional
Artificial Neural Network with backpropagation learning. Results
show that Bayesian learning for Neural Network generalizes
better.
 We have downloaded dataset collected by the Reality Mining
Project at MIT [5]. The Reality Mining project represents the
largest mobile phone experiment ever attempted in academia. The
project is collecting an unprecedented amount of data on human
behavior and group interactions that has been anonymized and
made available to the general academic community. This dataset

contain over 500,000 hours (~60 years) of continuous data on
daily human behavior. The dataset has been used by researchers in
a wide range of fields (including epidemiology, sociology,
physics, artificial intelligence, and organizational behavior). The
dataset is collected using one hundred Nokia 6600 smart phones
using a version of the Context application from the University of
Helsinki. Seventy-five users are either students or faculty in the
MIT Media Laboratory, while the remaining twenty-five are
incoming students at the MIT Sloan business school adjacent to
the laboratory. Of the seventy-five users at the lab, twenty are
incoming masters students and five are incoming MIT freshman.
The information collected includes call logs, Bluetooth devices in
proximity, cell tower IDs, application usage, and phone status
(such as charging and idle), which comes primarily from the
Context application. The study generated data collected by one
hundred human subjects over the course of nine months and
represent approximately 500,000 hours of data on users' location,
communication and device usage behavior. The portion of that
dataset that is most important to our experiments is the cell span
information. The cell span table represents the user roaming log in
the cellular network. Each row in the table tells the cell id where
the user is; the time he did enter and leave this specific cell.
Therefore, the whole table shows exactly the user movement
during the survey period. The following table represents a
snapshot of the cell span.

An important characteristic in any cellular network is that areas
covered by base stations overlap, so that several cells may be seen
in a single location. If overlapping cells have approximately equal
signal strength, the phone may hop between cells even when the
user is not moving (due to attenuation, reflection, shadowing and
diffraction of the electromagnetic waves). In dense areas, this
oscillation is significant. Therefore, there is no one-to-one
correspondence between a physical location and the cell used by a
phone. To overcome this problem, we cluster cells that tend to
represent one physical location according to the following
algorithm: All cells in the cluster are adjacent; The average length
of a visit to the cluster is larger than the sum of the individual cells
averages; Any proper subset of cells in a cluster does not satisfy
the previous condition. The first condition simply requires that all
cells in a cluster are near each other. The second condition tests
oscillation: the average time spent visiting a cluster is larger than
the sum of the individual times only when the user moves back
and forth between the cells in a cluster. If the user is at a cell that
belongs to multiple clusters it is unclear which of the clusters he
really is at. For simplicity, we recursively combine all the clusters
that have shared cells.

We normalized the input and output vector so that values fall in
the range [0; 1]. For example, we divide all cells data (current cell,
next cell and cell history) by maximum cell number. In this way,
we encoded the data in rational values in steps of (1/l), where l is
the maximum cell number. This encoding helps in faster and more
accurate training. The next table shows cells data before and after
encoding: Each row in the cell span table represents a movement
of the user in cellular network. However, we want to predict
where the user will be in any minute. Therefore, we need to
transform the data to represent minute by minute activities. Neural
Network inputs and outputs vectors have to be chosen carefully
whether the model will be used in standard training or Bayesian
analysis. Below is a description of the setup we have used. These
values are based on previous research on models used in the same

193

domain. Of course, we have tested several configurations and
selected the best one based on prediction accuracy. Inputs to the
network are: Cell ID represents the current cell in which the user
is roaming. As described earlier, cells are clusters to overcome the
problem of frequency hopping. Cells are also normalized to the
range [0, 1], Cells history represents locations the user has been
in. It is very important to note how history affects prediction
accuracy. It encapsulates in a way the current pattern of the user,
which helps predicting how he will move next, This value
represents the hour when the user has entered the current cell. The
value is normalized using the cosine function, This value
represents the minute when the user has entered the current cell.
The value is normalized using the cosine function, Day of week
represents when the user has entered this specific cell. The value
is according to the following scheme: The ID of the next cell the
user will enter. As described earlier, cells are clusters to overcome
the problem of frequency hopping. Cells are also normalized to
the range [0, 1]. Table 1 is extract of the input/output vectors
(before normalization).

Table 1: Extract of Input/Output Vectors
C
ell
I
D

Cell
Hist
ory
1

Cell
Hist
ory
2

Cell
Hist
ory
3

Cell
Hist
ory
4

Cell
Hist
ory
5

H
r

M
i
n

Day
of

We
ek

Ne
xt
Ce
ll

82 86 82 86 2059 86
2
1 2 4 86

86 82 86 82 86 2059
2
1 2 4 82

82 86 82 86 82 86
2
1 3 4 86

86 82 86 82 86 82
2
1 4 4

20
59

20
59 86 82 86 82 86

2
1 4 4 86

20
59 86 82 86 82 86

2
1 5 4 86

20
59 86 82 86 82 86

2
1 6 4 86

86 2059 86 82 86 82
2
1 6 4

20
59

Our model has one hidden layer (based on our research for
previous models in the same domain). The number of hidden
nodes will vary in the experiments in the range of 15 – 25 nodes.
As described before, the Bayesian Neural Network model requires
prior knowledge. It represents our initial belief before seeing the
data. We define Gaussian distribution for network weights and
biases. We also define hyperparameters that are from conjugate
inverse Gamma distribution. These hyperparameters govern the
possible values that the weights and biases may take instead of
giving static values to them. Moreover, each relevant group of
weights and biases (such as inputs to hidden weight vector) is
given a separate hyperparameter. In the same manner, prior
structure for the residuals (noise model) is defined. We have
divided part of the data that we have into training and testing data.
We decided to use one month for training the model. The patterns
used range from 26-7-2004 to 26-8-2004 and include all the
parameters that we described in the input vector: Cell ID – Cell
history – Start Hour – Start Minute – Day of week. The output
vector consists of one value of Next Cell. The testing data that we

use for prediction consists of one month patterns from 27-8-2004
till 20-9-2004.
We define here Standard and Bayesian Neural Networks models
used in our experiments: Resilient Backpropagation: Inputs: cell
ID, 5 cell history, start hour, start minute, day of week, Hidden
Nodes: 15 nodes, Output: next cell. One Step Secant: Inputs: cell
ID, 5 cell history, start hour, start minute, day of week , Hidden
Nodes: 15 nodes, Output: next cell. Levenberg-Marquadt:
Inputs: cell ID, 5 cell history, start hour, start minute, day of week
, Hidden Nodes: 15 nodes, Output: next cell. Elam: Inputs: cell
ID, start hour, start minute, day of week , Hidden Nodes: 15
nodes, Output: next cell. Bayes 1: This is Bayesian Neural
Network Model that has: Inputs: cell ID, 5 cell history, start hour,
start minute, day of week , Hidden Nodes: 15 nodes, Output: next
cell. Bayes 2: Same with 25 hidden nodes. Bayes 3: same with
no history. Bayes 4: same with 5 cells history and 15 hidden
nodes. Bayes 5: same with 25 hidden nodes. Bayes 6: same
with 15 hidden nodes.

We test our results against already established inference methods.
We have chosen standard Neural Networks models as the
benchmark. We use exactly the same Neural Network model and
analysis the effect of the Bayesian Learning on the quality of the
output solution. We also check speed and complexity of the
models. Table 2 illustrates our results.

Table 2: Results of the NN and Bayesians Approches
 Hidd

en
node
s

Traini
ng
time

Epoc
hs
/
No of
Sam
pes

Cell
Histo
ry

Predict
ion
Accura
cy
(exact)

Predict
ion
Accura
cy
(Pagin
g 6
neighb
or cell)

Bayes 1 15 3400 5 24% 35%
Bayes 2 25 2000 5 10% 16%
Bayes 3 15 2000 0 12% 24%
Bayes 4 15 1000 5 45% 64%
Bayes 5 25 600 5 47% 55%
Bayes 6 15 600 0 16% 39%
Resilien
t1

15 5 hrs 2500
0

5 0.5% 3%

Resiline
t2

15 40hrs 2500
00

5 1% 5%

Levenb
erg-
Marqua
dt

15 16 hrs 2500
0

5 0% 0%

One
Step
Secant

15 500 5 0% 0%

Elman /
RP train

15 8 hrs 500 0 1% 4%

Results show that Bayesian Neural Networks outperform Standard
Neural Networks by 8% for worst case and by 30% for best case.
Note that we compared the number of epochs to the number of
samples generated. Note also that most of the Standard Neural
Networks could not in the first place learn the user patterns and
therefore could not predict the location. We test our model to a
wider window. We generated test data for the periods from 30-10-

194

2004 till 26-11-2004 and 26-11-2004 till 26-12-2004. The next
table shows the results compared with our initial test results (using
Bayes 1 & 4 models)

Table 3: Comparison using wider window
 Period Prediction Accuracy (exact)

1st Month 24%
2nd Month 26%

Bayes 1

3rd Month 24%
1st Month 40%
2nd Month 48%

Bayes 4

3rd Month 36%
Usually prediction does not work in every case because we
sometimes just break from our daily routine. However, this break
is still in most cases related to my location. We tried to see the
outcome of searching nearby cells in case of the system hasn't
found the user in the predicted cell. Next tables show results of
prediction accuracy when we add paging neighbor cells:

Table 4: Results after adding paging
 Period Prediction

Accuracy
(exact)

Prediction Accuracy
(paging 6 neighbor
cells)

1st
Month

24% 35%

2nd
Month

26% 43%

Bayes
1

3rd
Month

24% 40%

1st
Month

40% 55%

2nd
Month

48% 65%

Bayes
4

3rd
Month

36% 54%

Results are very promising. Prediction accuracy increases on
average 60% in relative to checking only the one predicted cell.
Usually prediction does not work in every case because we
sometimes just break from our daily routine. However, this break
is still in most cases related to my location. We tried to see the
outcome of searching nearby cells in case of the system hasn't
found the user in the predicted cell. Tables 5&6 show results of
prediction accuracy when we add paging neighbor cells:

Table 5: Results of wider window with paging

 Window Prediction Accuracy
(exact)

Paging 6
Neighbor Cells

1st Month 24% 35%
2nd Month 26% 43%

Bayes
1

3rd Month 24% 40%
1st Month 52% 69%
2nd Month 56% 70%

Bayes
4

3rd Month 44% 60%

Table 6: Comparisons of Weekdays and Weekends
Paging Window Weekends Weekdays

1st Month 30% 39%
2nd Month 30% 47%

Bayes
1

3rd Month 33% 43%
1st Month 62% 72%
2nd Month 57% 74%

Bayes
4

3rd Month 53% 63%

Results are very promising. Prediction accuracy increases on
average 65% in relative to checking only the one predicted cell. In
this experiment, we test if we can also predicted services that the
user is using. Services are Voice Call, Short Message Service
(SMS) or Packet data. For Phone Voice and SMS, the user can
request these services (Outgoing) or someone else wants to
communicate with the user (Incoming):

Table 7: Input/Output extract for service prediction
Starttime Endtime Service Direction

8/3/2004
7:07:26 PM

8/3/2004
7:07:26 PM

Packet Data Outgoing

8/3/2004
7:07:26 PM

8/3/2004
7:07:26 PM

Packet Data Outgoing

8/3/2004
4:37:52 PM

8/3/2004
4:26:53 PM

Voice Call Outgoing

8/3/2004
7:07:26 PM

8/3/2004
7:07:26 PM

Packet Data Outgoing

8/5/2004
4:52:37 PM

8/5/2004
4:40:39 PM

Voice Call Outgoing

8/5/2004
9:02:34 PM

8/5/2004
9:02:30 PM

Voice Call Outgoing

8/6/2004
9:39:56 PM

8/6/2004
9:39:05 PM

Voice Call Outgoing

8/6/2004
10:37:18 PM

8/6/2004
10:37:18 PM

Short
Message

Incoming

8/6/2004
11:08:50 PM

8/6/2004
11:06:21 PM

Voice Call Outgoing

8/6/2004
11:54:10 PM

8/6/2004
11:53:55 PM

Voice Call Outgoing

8/7/2004
12:00:18 AM

8/6/2004
11:59:59 PM

Voice Call Outgoing

8/7/2004
12:19:35 AM

8/7/2004
12:19:13

AM

Voice Call Outgoing

8/7/2004
12:49:48 AM

8/7/2004
12:49:24

AM

Voice Call Outgoing

8/7/2004
12:52:04 AM

8/7/2004
12:51:23

AM

Voice Call Outgoing

8/7/2004
1:19:47 AM

8/7/2004
1:18:38 AM

Voice Call Outgoing

8/7/2004
1:48:35 AM

8/7/2004
1:48:28 AM

Voice Call Outgoing

8/7/2004
1:49:11 AM

8/7/2004
1:48:51 AM

Voice Call Outgoing

Each row represents one service requested and its start and end
time. Our input vector is therefore: Day of Week, Start Hour. The
output vector is the type of service. We decided that hour
precision is meaningful and more appropriate in contrast to minute
precision in case of location prediction. We trained the model with
data from 26-7-2004 to 26-8-2004. Results are summarized in the
next table:

Table 8: Results of Service Prediction

Window Service Prediction
1st Month 48%
2nd Month 62%
3rd Month 93%

Results show that services prediction accuracy can reach more
than 90%. We believe this is a logical result because usually

195

services have strong relation with what the user is doing, which
follows also some pattern related to timing.

One model for each user might not be feasible for large
deployment. In wireless networks with millions of users, this is
obviously impractical. We decided to test if we can group similar
people having the same daily activities into one model. In this
experiment we grouped data from 5 MIT computer science
students. We input this data into our model. We add one
additional input that identifies the student. The below table shows
results of the experiment:

Table 9: Results of Multi-User Prediction
User Exact Prediction Paging 6 neighbor cells
1 41% 60%
2 47% 70%
3 29% 46%
4 31% 50%
5 40% 59%
Average 37.6% 57%

Results show that we can actually group users with similar
characteristics, maybe who are working in the same company, or
have similar social activities. In this way, we can overcome the
problem of having large number of users.
In order to enhance prediction accuracy for Bayesian NN model,
we tried to adjust some of the input data. We decided to group
cells that users do not stay much in. The rational behind this is that
these cells are not important and usually do not represent
meaningful locations. In addition we tried the following input
data. We then tried 5, 10, 60 minutes resolution in the input data.
We input data to our model with different resolutions. As
explained above, usually people stay long time in important
places. We tried to reflect that in the input data. Next table shows
prediction accuracy for these 3 experiments:

Table 10: Results of Various time resolutions
Resolution Exact Prediction Paging 6

neighbor cells
5 minutes 79% 90%
10 minutes 77% 89%
60 minutes 85% 89%

Results show that prediction accuracy has been improved relative
to using the minute by minute resolution in the input data. Note
here that test data is identical in all cases; we adjust only the
training data. We the tried the use of Pattern detection from cell
history only. We only input to the model cell history (5 cells
history) without any other parameters to see how important cell
history in prediction accuracy. Amazingly, prediction accuracy
has improved more: 89% for exact prediction and 94% for paging
6 neighbor cells. Using only cell history (5 cells history) as input
to the standard neural network model, we increased slightly
prediction accuracy: 6% for exact prediction and 20% for paging 6
neighbor cells.

Figure 2: Prediction accuracy using time resolution

4. CONCLUSION
We deployed Bayesian learning for neural networks for both
location and service prediction. It is a hybrid model making use of
Bayesian inference in artificial neural networks. Results show that
prediction accuracy for this model outperforms all other discussed
standard neural networks. Enhancing prediction accuracy by
including cells geographical coverage and streets network can
extend our work. Moreover, studying service prediction and its
relation to location prediction is interesting feature for future
research.

5. REFERENCES
[1] Hassan Karimi and Xiong Liu. A Predictive Location Model

for Location-Based Services. GIS’03, November 7-8, 2003,
New Orleans, Louisiana, USA.

[2] Alejandro Quintero. A User Pattern Learning Strategy for
Managing Users’ Mobility in UMTS Networks.IEEE
Transactions on Mobile Computing, VOL. 4, NO. 6,
November/December 2005.

[3] Jarno Vanhatalo and Aki Vehtari. MCMC Methods for MLP-
network and Gaussian Process and Stuff– A documentation
for Matlab Toolbox MCMCstuff. Laboratory of
Computational Engineering, Helsinki University of
Technology.

[4] Radford Neal. Bayesian Methods for Machine Learning.
NIPS Tutorial, 13 December 2004, University of Toronto.

[5] Jouko Lampinen and Aki Vehtari. Bayesian Approach for
Neural Networks – Review and Case Studies. Laboratory of
Computational Engineering, Helsinki University of
Technology.

[6] Aki Vehtari, Simo Särkkä, and Jouko Lampinen. On MCMC
Sampling in Bayesian MLP Neural Networks. Laboratory of
Computational Engineering, Helsinki University of
Technology.

.

196

