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ABSTRACT 
Nowadays, path prediction is being extensively examined for use 
in the context of mobile and wireless computing towards more 
efficient network resource management schemes. Path prediction 
allows the network and services to further enhance the quality of 
service levels that the user enjoys. In this paper we present a path 
prediction algorithm that exploits human creatures habits. In this 
paper, we present a novel hybrid Bayesian neural network model 
for predicting locations on Cellular Networks (can also be 
extended to other wireless networks such as WI-FI and WiMAX). 
We investigate different parallel implementation techniques on 
mobile devices of the proposed approach and compare it to many 
standard neural network techniques such as: Back-propagation, 
Elman, Resilient, Levenberg-Marqudat, and One-Step Secant 
models. In our experiments, we compare results of the proposed 
Bayesian Neural Network with 5 standard neural network 
techniques in predicting both next location and next service to 
request. Bayesian learning for Neural Networks predicts both 
location and service better than standard neural network 
techniques since it uses well founded probability model to 
represent uncertainty about the relationships being learned. The 
result of Bayesian training is a posterior distribution over network 
weights. We use Markov chain Monte Carlo methods (MCMC) to 
sample N values from the posterior weights distribution. These N 
samples vote for the best prediction. Simulations of the algorithm, 
performed using a Realistic Mobility Patterns, show increased 
prediction accuracy. 
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1. INTRODUCTION 
In wireless cellular networks, a user must be able to access 
wireless services while he is moving. Therefore, the network must 
be able to identify where exactly the user is. This is called 
mobility management. If the network can predict where the user 
is, then considerable bandwidth can be saved and resources can be 
optimized in mobility management. Prediction is regarded as one 
of the direct application of artificial intelligent systems. Usually 
we have large amount of sensor data that need to be interpreted in 
order to extract knowledge from this information. Such 
knowledge can be extremely useful to optimize resources and 
provide intelligent services. We usually try to learn (extract) 
patterns from the available data. Patterns can be associative such 
as attributes that occur together, classification such as indication 
of a given category or temporal such as sequences that happen 
frequently [1]. Prediction attempts to form patterns that permit it 
to predict the next event(s) given the available input data.    

In this paper, focus is on predicting user movements in wireless 
networks. In other words, we would like to predict what are the 
next locations the users would probably be given their past 
movements. Predicting movements in such domain is essential as 
it will enable the network to effectively allocate resources, better 
location update procedures and easier location search techniques 
[2]. This work can also be extended to even predict what services 
the user is expected to use are. Consequently, better quality of 
services is provided and the network is able to allocate efficiently 
the needed resources not only at the right place but also at the 
right time. We want to reduce the number of explicit locations 
updates/paging if we can successfully predict where the user is. In 
other words, if the system can predict accurately where the user is 
roaming, the user does not have to update the network about his 
location (location update). Moreover, the core network does not 
have to search where the user is (location paging). Therefore we 
are reducing the number of overall updates/paging messages 
which take considerable network bandwidth. If services that the 
user is expected to use are predicted, the network can plan 
efficiently resources allocations. This will ensure of course quality 
of services provided by the network. It is interesting to experiment 
whether services that the user is using are related to his movement 
patterns. There are several techniques that can be used in 
movement predictions such as Artificial Neural Networks, 
Bayesian Belief Networks, Hidden Markov Chains, Dynamic 
Belief Networks…etc [1]. Each technique has its advantages and 
disadvantages. Our work uses a hybrid technique – Bayesian 
Neural Networks that makes use of the pros of Bayesian inference 
in Artificial Neural Nets. 
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2. BAYESIAN LEARNING for NEURAL 
NETWORKS 
MLP models are the estimation of the model parameters and 
controlling the model complexity. The optimal number of degrees 
of freedom in the model depends on the number of training 
samples, amount of noise in the samples and the complexity of the 
underlying function being estimated. With standard neural 
networks techniques, to determine the correct model complexity 
and to set up a network with the desired complexity are often 
computationally very expensive. Another problem of standard 
neural network methods is the lack of tools for analyzing the 
results (confidence intervals for the results, like 10 % and 90 %). 
Recently Bayesian methods have become a viable alternative to 
the older error minimization based approaches. Researchers have 
suggested the importance of incorporating human knowledge in 
neural networks model to improve their performance. This 
knowledge is modeled through prior distribution over Neural 
Networks parameters. Bayesian methods use probability to 
quantify uncertainty in inferences and the result of Bayesian 
learning is a probability distribution expressing our beliefs 
regarding how likely the different predictions are. Predictions are 
made by integrating all models over this posterior distribution. 
The Bayesian learning uses probability to represent uncertainty 
about the relationship being learned. Before data is seen, prior 
opinions about what the true relationship might be can be 
expressed in a probability distribution over the network weights 
that define this relationship. After the training data is presented, 
the revised opinions are captured by a posterior distribution over 
network weights. Network weights that seemed plausible before, 
but which do not match the data very well, will now be seen as 
being much less likely, while the probability for values of the 
weights that do fit the data well will have increased [1]. In 
Bayesian data analysis all uncertain quantities are modeled as 
probability distributions, and inference is performed by 
constructing the posterior conditional probabilities for the 
unobserved variables of interest, given the observed data sample 
and prior assumptions.  According to Bayes: 

 
Where P(paramerters|data) is the posterior probability of 
parameters, P(parameters) is the prior probability, 
P(data|parameters) is the likelihood and P(data) is a normalization 
constant. We want to make use of probability theories in Neural 
Networks as it will naturally overcome the possible problems in 
traditional learning. One of the major benefits of Bayesian MLP is 
that the resulting prediction is an average prediction of possible 
MLP solutions weighted by their probability. In other words, 
Bayesian MLP returns theoretically all possible solutions and 
integrates them out. Traditional MLP can be regarded as specific 
solution from the set returned by the Bayesian one. If the inputs of 
the network are set to the values for some new case, the posterior 
distribution over network weights will give rise to a distribution 
over the outputs of the network, which is known as the predictive 
distribution for this new case. If a single-valued prediction is 
needed, one might use the mean of the predictive distribution, but 
the full predictive distribution also tells how uncertain this 
prediction is. In Bayesian MLP the output is: 

 

Where P(new data|data) is the solution, P(new data|parameters) is 
the traditional MLP function and P(parameters|data) is the 
probability of this specific MLP function. The solution is thus 
integration over all possible MLP solutions (weights, bias…etc). 
Implementing the exact model is one of the biggest problems with 
Bayesian methods. Dealing with a complex distribution over 
weights is not as simple as finding a single "best" value for the 
weights. We have to drawn random samples and average those 
samples: 

 
N different samples for possible MLP solutions (weights, 
bias…etc) θ. Y new is calculated by taking the mean of the N 
different MLP outputs. M represent all parameters defining the 
model such as the number of perceptrons in the hidden layer and 
the choice of the activation function. In full Bayesian 
implementation we have to take into consideration different 
models M (varying the number of hidden perceptrons). 
Consequently, the final output is also the average of all models M 
outputs [4]. 

 
Figure 1: Bayesian MLP solution in a regression problem 

 
The previous figure describes the solution of Bayesian MLP 
solution in a regression problem. The dots are the data points. The 
gray thin lines are N different solutions and the thick solid line is 
the average solution. It is easy to spot that the average solution is 
smoother that some individual solutions. In case of MLP the 
posterior distribution is typically very complex. The integrations 
required by Bayesian approach can be approximated using 
Markov Chain Monte Carlo (MCMC) methods [6]. An integral μ 
= ∫ g(x)p(x) dx can be approximated by MCMC, using a sample of 
values x(t) drawn from the distribution p(x)  

 
In the MCMC, samples are generated using a Markov chain that 
has the desired posterior distribution as its stationary distribution. 
Monte Carlo methods for Bayesian neural networks have been 
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developed by Neal [2]. The posterior distribution is represented by 
a sample of perhaps a few dozen sets of network weights. The 
sample is obtained by simulating a Markov chain whose 
equilibrium distribution is the posterior distribution for weights. 
The key idea in MCMC methods is to obtain a sample from the 
posterior and then base inference on that sample, for example, 
replacing posterior expectations with sample means over the 
simulated posterior sample. The main difficulty is MCMC 
methods is in generating a sample from the posterior p(θ|D). The 
rational is to consider a Markov chain {θn} with state θ and 
having p(θ|D) as stationary distribution. The strategy is to start 
with arbitrary values θ, let the Markov chain run until it has 
practically reached convergence, say after T iterations, and use the 
next k observed values of the chain as an approximate posterior 
sample A = { θ1, θ2..., θk}. In other words, the state of the chain 
after a large number of steps is then used as a sample from the 
desired distribution. The quality of the sample improves as a 
function of the number of steps. Usually it is not hard to construct 
a Markov Chain with the desired properties. The more difficult 
problem is to determine how many steps are needed to converge 
to the stationary distribution within an acceptable error. There are 
several algorithms used to implement MCMC methods such as 
Metropolis-Hastings sampling, Hybrid Monte Carlo sampling, 
Gibbs sampling and Reversible jump Markov chain Monte Carlo 
sampling [6]. The method is exact in the limit as the size of the 
sample and the length of time for which the Markov chain is run 
increase, but convergence can sometimes be slow in practice [6]. 

3. EXPERIMENTAL METHODOLOGY 
Statistical Bayesian techniques usually require more expert work 
than the standard approach, either to devise reasonable 
assumptions for the distributions, or to include different options in 
the models and integrate over them, but once that is done, the 
results are consistently better than with other approaches. There 
are several packages available to implement Bayesian Learning 
for Neural Networks. We choose MCMCStuff from Helsinki 
University (Finland) [3] because it implements all Bayesian 
methods for MLP in the Matlab environment. MCMCstuff 
toolbox is a collection of Matlab functions for Bayesian inference 
with Markov chain Monte Carlo (MCMC) methods. MCMCstuff 
toolbox is a collection of Matlab functions for Bayesian inference 
with Markov chain Monte Carlo (MCMC) methods [6]. The 
MCMC methods for MLP package has been written using Matlab 
and C programming languages and works with Matlab versions 
6.* and 7.* as a toolbox. The code in this toolbox has been 
streamlined and optimized for faster computation. Some of the 
most computationally critical parts have been coded in C. This 
toolbox provides different sampling methods to implement 
MCMC such as Metropolis-Hastings sampling, Hybrid Monte 
Carlo sampling, Gibbs sampling and Reversible jump Markov 
chain Monte Carlo sampling. We have tested this toolbox for 
MLP network in regression problem with Gaussian noise. We 
have also tested the same regression problem with conventional 
Artificial Neural Network with backpropagation learning. Results 
show that Bayesian learning for Neural Network generalizes 
better. 
 We have downloaded dataset collected by the Reality Mining 
Project at MIT [5]. The Reality Mining project represents the 
largest mobile phone experiment ever attempted in academia. The 
project is collecting an unprecedented amount of data on human 
behavior and group interactions that has been anonymized and 
made available to the general academic community. This dataset 

contain over 500,000 hours (~60 years) of continuous data on 
daily human behavior. The dataset has been used by researchers in 
a wide range of fields (including epidemiology, sociology, 
physics, artificial intelligence, and organizational behavior). The 
dataset is collected using one hundred Nokia 6600 smart phones 
using a version of the Context application from the University of 
Helsinki. Seventy-five users are either students or faculty in the 
MIT Media Laboratory, while the remaining twenty-five are 
incoming students at the MIT Sloan business school adjacent to 
the laboratory. Of the seventy-five users at the lab, twenty are 
incoming masters students and five are incoming MIT freshman. 
The information collected includes call logs, Bluetooth devices in 
proximity, cell tower IDs, application usage, and phone status 
(such as charging and idle), which comes primarily from the 
Context application. The study generated data collected by one 
hundred human subjects over the course of nine months and 
represent approximately 500,000 hours of data on users' location, 
communication and device usage behavior. The portion of that 
dataset that is most important to our experiments is the cell span 
information. The cell span table represents the user roaming log in 
the cellular network. Each row in the table tells the cell id where 
the user is; the time he did enter and leave this specific cell. 
Therefore, the whole table shows exactly the user movement 
during the survey period. The following table represents a 
snapshot of the cell span. 
 
An important characteristic in any cellular network is that areas 
covered by base stations overlap, so that several cells may be seen 
in a single location. If overlapping cells have approximately equal 
signal strength, the phone may hop between cells even when the 
user is not moving (due to attenuation, reflection, shadowing and 
diffraction of the electromagnetic waves). In dense areas, this 
oscillation is significant. Therefore, there is no one-to-one 
correspondence between a physical location and the cell used by a 
phone. To overcome this problem, we cluster cells that tend to 
represent one physical location according to the following 
algorithm: All cells in the cluster are adjacent; The average length 
of a visit to the cluster is larger than the sum of the individual cells 
averages; Any proper subset of cells in a cluster does not satisfy 
the previous condition. The first condition simply requires that all 
cells in a cluster are near each other. The second condition tests 
oscillation: the average time spent visiting a cluster is larger than 
the sum of the individual times only when the user moves back 
and forth between the cells in a cluster. If the user is at a cell that 
belongs to multiple clusters it is unclear which of the clusters he 
really is at. For simplicity, we recursively combine all the clusters 
that have shared cells. 
 
We normalized the input and output vector so that values fall in 
the range [0; 1]. For example, we divide all cells data (current cell, 
next cell and cell history) by maximum cell number. In this way, 
we encoded the data in rational values in steps of (1/l), where l is 
the maximum cell number. This encoding helps in faster and more 
accurate training. The next table shows cells data before and after 
encoding: Each row in the cell span table represents a movement 
of the user in cellular network. However, we want to predict 
where the user will be in any minute. Therefore, we need to 
transform the data to represent minute by minute activities. Neural 
Network inputs and outputs vectors have to be chosen carefully 
whether the model will be used in standard training or Bayesian 
analysis. Below is a description of the setup we have used. These 
values are based on previous research on models used in the same 
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domain. Of course, we have tested several configurations and 
selected the best one based on prediction accuracy. Inputs to the 
network are: Cell ID represents the current cell in which the user 
is roaming. As described earlier, cells are clusters to overcome the 
problem of frequency hopping. Cells are also normalized to the 
range [0, 1], Cells history represents locations the user has been 
in. It is very important to note how history affects prediction 
accuracy. It encapsulates in a way the current pattern of the user, 
which helps predicting how he will move next, This value 
represents the hour when the user has entered the current cell. The 
value is normalized using the cosine function, This value 
represents the minute when the user has entered the current cell. 
The value is normalized using the cosine function, Day of week 
represents when the user has entered this specific cell. The value 
is according to the following scheme: The ID of the next cell the 
user will enter. As described earlier, cells are clusters to overcome 
the problem of frequency hopping. Cells are also normalized to 
the range [0, 1]. Table 1 is extract of the input/output vectors 
(before normalization). 
 

Table 1: Extract of Input/Output Vectors 
C
ell 
I
D 

Cell 
Hist
ory 
1 

Cell 
Hist
ory 
2 

Cell 
Hist
ory 
3 

Cell 
Hist
ory 
4 

Cell 
Hist
ory 
5 

H
r 

M
i
n 

Day 
of 

We
ek 

Ne
xt 
Ce
ll 

82 86 82 86 2059 86 
2
1 2 4 86 

86 82 86 82 86 2059 
2
1 2 4 82 

82 86 82 86 82 86 
2
1 3 4 86 

86 82 86 82 86 82 
2
1 4 4 

20
59 

20
59 86 82 86 82 86 

2
1 4 4 86 

20
59 86 82 86 82 86 

2
1 5 4 86 

20
59 86 82 86 82 86 

2
1 6 4 86 

86 2059 86 82 86 82 
2
1 6 4 

20
59 

 
Our model has one hidden layer (based on our research for 
previous models in the same domain). The number of hidden 
nodes will vary in the experiments in the range of 15 – 25 nodes. 
As described before, the Bayesian Neural Network model requires 
prior knowledge. It represents our initial belief before seeing the 
data. We define Gaussian distribution for network weights and 
biases. We also define hyperparameters that are from conjugate 
inverse Gamma distribution. These hyperparameters govern the 
possible values that the weights and biases may take instead of 
giving static values to them. Moreover, each relevant group of 
weights and biases (such as inputs to hidden weight vector) is 
given a separate hyperparameter. In the same manner, prior 
structure for the residuals (noise model) is defined. We have 
divided part of the data that we have into training and testing data. 
We decided to use one month for training the model. The patterns 
used range from 26-7-2004 to 26-8-2004 and include all the 
parameters that we described in the input vector: Cell ID – Cell 
history – Start Hour – Start Minute – Day of week. The output 
vector consists of one value of Next Cell. The testing data that we 

use for prediction consists of one month patterns from 27-8-2004 
till 20-9-2004. 
We define here Standard and Bayesian Neural Networks models 
used in our experiments: Resilient Backpropagation: Inputs: cell 
ID, 5 cell history, start hour, start minute, day of week, Hidden 
Nodes: 15 nodes, Output: next cell. One Step Secant: Inputs: cell 
ID, 5 cell history, start hour, start minute, day of week , Hidden 
Nodes: 15 nodes, Output: next cell. Levenberg-Marquadt: 
Inputs: cell ID, 5 cell history, start hour, start minute, day of week 
, Hidden Nodes: 15 nodes, Output: next cell. Elam: Inputs: cell 
ID, start hour, start minute, day of week , Hidden Nodes: 15 
nodes, Output: next cell. Bayes 1: This is Bayesian Neural 
Network Model that has: Inputs: cell ID, 5 cell history, start hour, 
start minute, day of week , Hidden Nodes: 15 nodes, Output: next 
cell. Bayes 2: Same with 25 hidden nodes. Bayes 3: same with 
no history. Bayes 4: same with 5 cells history and 15 hidden 
nodes. Bayes 5: same with 25 hidden nodes. Bayes 6: same 
with 15 hidden nodes. 
 
We test our results against already established inference methods. 
We have chosen standard Neural Networks models as the 
benchmark. We use exactly the same Neural Network model and 
analysis the effect of the Bayesian Learning on the quality of the 
output solution. We also check speed and complexity of the 
models. Table 2 illustrates our results. 
 

Table 2: Results of the NN and Bayesians Approches 
 Hidd

en 
node
s 

Traini
ng 
time 

Epoc
hs 
/ 
No of 
Sam
pes 

Cell 
Histo
ry 

Predict
ion 
Accura
cy 
(exact) 

Predict
ion 
Accura
cy 
(Pagin
g 6 
neighb
or cell) 

Bayes 1 15  3400 5 24% 35% 
Bayes 2 25  2000 5 10% 16% 
Bayes 3 15  2000 0 12% 24% 
Bayes 4 15  1000 5 45% 64% 
Bayes 5 25  600 5 47% 55% 
Bayes 6 15  600 0 16% 39% 
Resilien
t1 

15 5 hrs 2500
0 

5 0.5% 3% 

Resiline
t2 

15 40hrs 2500
00 

5 1% 5% 

Levenb
erg-
Marqua
dt 

15 16 hrs 2500
0 

5 0% 0% 

One 
Step 
Secant 

15  500 5 0% 0% 

Elman / 
RP train 

15 8 hrs 500 0 1% 4% 

 
Results show that Bayesian Neural Networks outperform Standard 
Neural Networks by 8% for worst case and by 30% for best case. 
Note that we compared the number of epochs to the number of 
samples generated. Note also that most of the Standard Neural 
Networks could not in the first place learn the user patterns and 
therefore could not predict the location.  We test our model to a 
wider window. We generated test data for the periods from 30-10-
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2004 till 26-11-2004 and 26-11-2004 till 26-12-2004. The next 
table shows the results compared with our initial test results (using 
Bayes 1 & 4 models) 
 

Table 3: Comparison using wider window 
 Period Prediction Accuracy (exact) 

1st Month 24% 
2nd Month 26% 

Bayes 1 

3rd Month 24% 
1st Month 40% 
2nd Month 48% 

Bayes 4 

3rd Month 36% 
Usually prediction does not work in every case because we 
sometimes just break from our daily routine. However, this break 
is still in most cases related to my location. We tried to see the 
outcome of searching nearby cells in case of the system hasn't 
found the user in the predicted cell. Next tables show results of 
prediction accuracy when we add paging neighbor cells:  
 

Table 4: Results after adding paging 
 Period Prediction 

Accuracy 
(exact) 

Prediction Accuracy 
(paging 6 neighbor 
cells) 

1st 
Month 

24% 35% 

2nd 
Month 

26% 43% 

Bayes 
1 

3rd 
Month 

24% 40% 

1st 
Month 

40% 55% 

2nd 
Month 

48% 65% 

Bayes 
4 

3rd 
Month 

36% 54% 

Results are very promising. Prediction accuracy increases on 
average 60% in relative to checking only the one predicted cell. 
Usually prediction does not work in every case because we 
sometimes just break from our daily routine. However, this break 
is still in most cases related to my location. We tried to see the 
outcome of searching nearby cells in case of the system hasn't 
found the user in the predicted cell. Tables 5&6 show results of 
prediction accuracy when we add paging neighbor cells: 

 
Table 5: Results of wider window with paging 

 Window Prediction Accuracy 
(exact) 

Paging 6 
Neighbor Cells 

1st Month 24% 35% 
2nd Month 26% 43% 

Bayes 
1 

3rd Month 24% 40% 
1st Month 52% 69% 
2nd Month 56% 70% 

Bayes 
4 

3rd Month 44% 60% 
 

Table 6: Comparisons of Weekdays and Weekends 
Paging Window Weekends Weekdays 

1st Month 30% 39% 
2nd Month 30% 47% 

Bayes 
1 

3rd Month 33% 43% 
1st Month 62% 72% 
2nd Month 57% 74% 

Bayes 
4 

3rd Month 53% 63% 

Results are very promising. Prediction accuracy increases on 
average 65% in relative to checking only the one predicted cell. In 
this experiment, we test if we can also predicted services that the 
user is using. Services are Voice Call, Short Message Service 
(SMS) or Packet data. For Phone Voice and SMS, the user can 
request these services (Outgoing) or someone else wants to 
communicate with the user (Incoming): 
 

Table 7: Input/Output extract for service prediction 
Starttime Endtime Service Direction 

8/3/2004 
7:07:26 PM 

8/3/2004 
7:07:26 PM 

Packet Data Outgoing 

8/3/2004 
7:07:26 PM 

8/3/2004 
7:07:26 PM 

Packet Data Outgoing 

8/3/2004 
4:37:52 PM 

8/3/2004 
4:26:53 PM 

Voice Call Outgoing 

8/3/2004 
7:07:26 PM 

8/3/2004 
7:07:26 PM 

Packet Data Outgoing 

8/5/2004 
4:52:37 PM 

8/5/2004 
4:40:39 PM 

Voice Call Outgoing 

8/5/2004 
9:02:34 PM 

8/5/2004 
9:02:30 PM 

Voice Call Outgoing 

8/6/2004 
9:39:56 PM 

8/6/2004 
9:39:05 PM 

Voice Call Outgoing 

8/6/2004 
10:37:18 PM 

8/6/2004 
10:37:18 PM 

Short 
Message 

Incoming 

8/6/2004 
11:08:50 PM 

8/6/2004 
11:06:21 PM 

Voice Call Outgoing 

8/6/2004 
11:54:10 PM 

8/6/2004 
11:53:55 PM 

Voice Call Outgoing 

8/7/2004 
12:00:18 AM 

8/6/2004 
11:59:59 PM 

Voice Call Outgoing 

8/7/2004 
12:19:35 AM 

8/7/2004 
12:19:13 

AM 

Voice Call Outgoing 

8/7/2004 
12:49:48 AM 

8/7/2004 
12:49:24 

AM 

Voice Call Outgoing 

8/7/2004 
12:52:04 AM 

8/7/2004 
12:51:23 

AM 

Voice Call Outgoing 

8/7/2004 
1:19:47 AM 

8/7/2004 
1:18:38 AM 

Voice Call Outgoing 

8/7/2004 
1:48:35 AM 

8/7/2004 
1:48:28 AM 

Voice Call Outgoing 

8/7/2004 
1:49:11 AM 

8/7/2004 
1:48:51 AM 

Voice Call Outgoing 

 
Each row represents one service requested and its start and end 
time. Our input vector is therefore: Day of Week, Start Hour. The 
output vector is the type of service. We decided that hour 
precision is meaningful and more appropriate in contrast to minute 
precision in case of location prediction. We trained the model with 
data from 26-7-2004 to 26-8-2004. Results are summarized in the 
next table: 

 
Table 8: Results of Service Prediction 

Window Service Prediction 
1st Month 48% 
2nd Month 62% 
3rd Month 93% 

 
Results show that services prediction accuracy can reach more 
than 90%. We believe this is a logical result because usually 
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services have strong relation with what the user is doing, which 
follows also some pattern related to timing. 
  
One model for each user might not be feasible for large 
deployment. In wireless networks with millions of users, this is 
obviously impractical. We decided to test if we can group similar 
people having the same daily activities into one model. In this 
experiment we grouped data from 5 MIT computer science 
students. We input this data into our model. We add one 
additional input that identifies the student. The below table shows 
results of the experiment: 
 

Table 9: Results of Multi-User Prediction 
User Exact Prediction Paging 6 neighbor cells 
1 41% 60% 
2 47% 70% 
3 29% 46% 
4 31% 50% 
5 40% 59% 
Average 37.6% 57% 

 
Results show that we can actually group users with similar 
characteristics, maybe who are working in the same company, or 
have similar social activities. In this way, we can overcome the 
problem of having large number of users. 
In order to enhance prediction accuracy for Bayesian NN model, 
we tried to adjust some of the input data. We decided to group 
cells that users do not stay much in. The rational behind this is that 
these cells are not important and usually do not represent 
meaningful locations. In addition we tried the following input 
data. We then tried 5, 10, 60 minutes resolution in the input data. 
We input data to our model with different resolutions. As 
explained above, usually people stay long time in important 
places. We tried to reflect that in the input data. Next table shows 
prediction accuracy for these 3 experiments: 
 

Table 10: Results of Various time resolutions 
Resolution Exact Prediction Paging 6 

neighbor cells 
5 minutes 79% 90% 
10 minutes 77% 89% 
60 minutes 85% 89% 

 
Results show that prediction accuracy has been improved relative 
to using the minute by minute resolution in the input data. Note 
here that test data is identical in all cases; we adjust only the 
training data. We the tried the use of Pattern detection from cell 
history only. We only input to the model cell history (5 cells 
history) without any other parameters to see how important cell 
history in prediction accuracy. Amazingly, prediction accuracy 
has improved more: 89% for exact prediction and 94% for paging 
6 neighbor cells. Using only cell history (5 cells history) as input 
to the standard neural network model, we increased slightly 
prediction accuracy: 6% for exact prediction and 20% for paging 6 
neighbor cells. 

 

 
Figure 2: Prediction accuracy using time resolution 

4. CONCLUSION 
We deployed Bayesian learning for neural networks for both 
location and service prediction. It is a hybrid model making use of 
Bayesian inference in artificial neural networks. Results show that 
prediction accuracy for this model outperforms all other discussed 
standard neural networks. Enhancing prediction accuracy by 
including cells geographical coverage and streets network can 
extend our work. Moreover, studying service prediction and its 
relation to location prediction is interesting feature for future 
research. 
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