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ABSTRACT
Portable devices have more data storage and increasing com-
munication capabilities everyday. In addition to classic in-
frastructure based communication, these devices can exploit
human mobility and opportunistic contacts to communicate.
We analyze the characteristics of such opportunistic forward-
ing paths. We establish that opportunistic mobile networks
in general are characterized by a small diameter, a destina-
tion device is reachable using only a small number of relays
under tight delay constraint. This property is first demon-
strated analytically on a family of mobile networks which
follow a random graph process. We then establish a similar
result empirically with four data sets capturing human mo-
bility, using a new methodology to efficiently compute all
the paths that impact the diameter of an opportunistic mobile
networks. We complete our analysis of network diameter by
studying the impact of intensity of contact rate and contact
duration. This work is, to our knowledge, the first valida-
tion that the so called “small world” phenomenon applies
very generally to opportunistic networking between mobile
nodes.

1. INTRODUCTION
The proliferation of powerful portable devices has cre-

ated a new environment for networking. As opposed to
conventional communication that relies on infrastruc-
ture, these devices can use hop-by-hop opportunistic
data forwarding between each other. In this environ-
ment, a device should decide whether or not to transfer
a message at the time it meets another one. How to
select the next hop towards the destination in a way
to minimize delay and maximize success rate is so far
unknown. It is in general difficult to design opportunis-
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tic forwarding algorithms, as their performance depends
extensively on the characteristic of the mobility present
in the network [2]. We claim that it is critical to study
first the properties of the paths made available between
nodes by opportunistic contacts and mobility.

Among topological properties that directly impact
forwarding, it is essential to characterize the diameter
of an opportunistic network. The diameter bounds the
number of hops needed to construct a path over time
between two nodes. Opportunistic forwarding seems
in general significantly harder for networks with large
diameters. Note that as opposed to paths in a static
graph, the paths in opportunistic mobile networks have
both time-position and hop-number; we wish to char-
acterize both of them since each has a great impact on
the feasibility of forwarding. We define formally the di-
ameter for any opportunistic mobile network as follows:
the number of hops needed to achieve a high propor-
tion (e.g. 99%) of the success rate of flooding, under
any time constraint. This work does not aim at char-
acterizing one forwarding algorithm, but instead it con-
tributes to a better understanding of the performance
of all algorithms with regard to hops and delays.

This paper makes the following contributions.

• We prove that the diameter for a family of op-
portunistic networks, described by a process of
random graphs, increases slowly with the network
size. A phase transition characterizes when paths
that are short both in terms of delay and hop-
number may be found. This result is analogous
to the short diameter observed among vertexes of
a random graph. We also prove that the hop-
number of the delay-optimal path varies little with
the contact rate, especially when the network is
sparse (i.e. when the contact rate is low) (§3).

• Since the definition of the diameter requires to
know at all time the delay-optimal path between
two nodes, we propose an efficient algorithm that
computes these paths exhaustively (§4).

• We apply our technique to four mobility traces.
The results validate the implication of our analy-



sis for measurement of human mobility in diverse
environments; we generally observe diameter be-
tween 4 and 6 hops (§5). Lastly, we investigate em-
pirically the impact of different characteristics of
opportunistic contacts (duration, intensity of con-
tacts) on the network diameter (§6).

To the best of our knowledge, this work presents for
the first time both simple analytical results and empiri-
cal evidence validating that the so called “small world”
phenomenon is relevant for delay-efficient opportunistic
networking.

2. RELATED WORK
Opportunistic mobile networks can be seen as a class

of delay-tolerant networks. As opposed to other works
in this area, opportunistic forwarding do not make the
assumption that details or summary about future device
mobility are known (e.g. [7]) nor that mobility may be
partly controlled to serve the network’s need (e.g. [19]).
Grossglauser and Tse pioneered theoretical analysis of
opportunistic forwarding; they established in [5] that
mobility increases the capacity of a network, when de-
vices are densely deployed and follow a regular mobility
process. Most of the forwarding algorithms proposed
since that time (see e.g. [2] and references therein) in-
cludes for each packet a time-out and a maximum num-
ber of hops, to avoid consuming too much resource.
These parameters should depend on the properties of
paths available thanks to the mobility, although this
aspect remains little known today. In [16], the authors
advocate to use opportunistic connections and social
network properties to improve data dissemination in
mobile networks. Our paper justifies that the small
world phenomenon can be beneficial in such context.

Previous works that characterize the impact of mobil-
ity on opportunistic forwarding have focused on the dis-
tribution of the time between two successive contacts for
the same pair, also called the inter-contact time [2],[9,
18, 17]. [18] identifies modes in the contact process
among buses, created by periodic schedule. In [17], us-
ing a data set extracted from students lectures schedule,
the authors studies minimal delay and a ”hop distance”
separately; the latter is computed using a static graph
extracted from the mobility. None of these previous
works has studied the delay and hop-number properties
of paths available over time in a general context. Pio-
neer experimental works collecting mobility traces did
not consider multi-hop paths properties [6, 13, 4].

The characterization of paths length in a random
graph is not a new research topic [8], but to the best of
our knowledge, none of these works considered a graph
that evolves with time. Up to now, the characterization
of dynamic networks has considered contemporaneous
paths in a graph with an increasing set of vertexes [12].
One essential new feature in our model is that the path

itself is not drawn at a given point in time, but should
follow a sequence of steps in a chronological way. These
structures, known as temporal networks, or sometimes
called ”evolving graphs”, have been studied from an al-
gorithmic standpoint [15, 10, 1]. None of these works
analyzed large random structures with such property.

3. RANDOM TEMPORAL NETWORKS
We model opportunistic mobile networks as a tem-

poral network, i.e. a graph with a static set of nodes,
and a set of edges that may change with time. In this
paper we discuss the properties of sequences of edges
that verify a chronological property. These sequence
are generally called paths. As a consequence we need
to study jointly how paths behave with respect to time
and with respect to the sequence of nodes they follow.

We analyze in this section a family of simple tem-
poral networks, random temporal networks, which cap-
ture dynamic edges using a sequence of uniform random
graphs. In other words, we assume that during each
time slot, a contact between two nodes may occur with
a fixed probability, independently of other nodes and
other time slots. A couple of variants of this model are
presented to include the impact of continuous time, and
different assumptions on the latency/bandwidth found
locally. One of our main findings is a condition for the
existence of paths with constraints on both delay and
hop-number.

Before starting this study, note that random temporal
networks follow simplifying assumptions about mobility
that are not usually met in practice. This point is dis-
cussed further in §3.4. We present a more general model
of temporal network in §4. It is used to study properties
of paths found in empirical traces, where these assump-
tions need not hold.

3.1 Definitions & Assumptions
Consider a network made of N nodes. We are study-

ing the properties of large graphs, assuming that the
contact rate (i.e. the average number of contacts made
by a node in a unit of time) remains a constant λ.

For any functions f, g of N , we write f(N) = Θ̃(g(N))
if there exist four positive constants c, C and α, β such
that, for N sufficiently large, we have

c(ln N)−α · g(N) ≤ f(N) ≤ C(ln N)β · g(N) .

We use the following elementary consequence:

Proposition 1. If f(N) = Θ̃(Na) with a ∈ R,

then a < 0 =⇒ lim
∞

f = 0, a > 0 =⇒ lim
∞

f = ∞,

3.1.1 Discrete-time model

This may be seen as a generalization of the uniform
random graph introduced by Erdős and Rényi. A clas-
sical uniform random graph is a graph G = (V, E) such
that the set of edges E is a random variable verifying:



• P [(u, v) ∈ E ] = p for any pair of nodes (u, v).

• The events { (u, v) ∈ E }, for all pairs (u, v), are
mutually independent.

Note that since we assume an average contact rate λ,
we have in this case p = λ

N−1 .
We define a random temporal network as a collection

of graphs { Gt = (V, Et) | t ∈ N } such that

• P [(u, v) ∈ Et ] = p = λ
N−1 for any pair (u, v).

• The events { (u, v) ∈ Et }, for all pairs (u, v) and
all time t, are mutually independent.

The pairs (u, v) may be directed or undirected with-
out changing any of the definitions above.

3.1.2 Continuous-time model

In the discrete-time model above, for any pair of
nodes (u, v) the set of indices t such that edge (u, v)
is in Et is a sequence of integers in N separated by ge-
ometric random variables. A natural generalization of
the model to a continuous time setting is then to as-
sume that, for any pairs of nodes (u, v), the times of
contact are separated by exponential random variables.
In other words, this process of time instants constitutes
a Poisson process. All the results of this paper have
been also demonstrated in continuous time (see [3]).

3.1.3 Paths in long contact case/short contact case

A path from u to v in a temporal network is a se-
quence u = u0 ;

t1 u1 ; · · · ;
tk uk = v such that:

(i) (ui−1, ui) ∈ Eti
for all i = 1, . . . , k,

(ii) ti+1 ≥ ti for all i = 1, . . . , k.

We assume that all contacts have a fixed duration
that is either one time slot (in the discrete time model)
or negligible (in the continuous time model). To model
the impact of a limited local bandwidth, or local latency,
on the properties of paths, we introduce two cases.

We define the long contact case as the model where
any number of edges may be used in a single time slot, as
allowed by the definition of a path found above. In other
words we assume that a single time slot is sufficiently
long to exchange across several contacts.

On the contrary, we define the short contact case as
the model where only one contact may be used in a
single time slot. In other words, we require that all
paths verify, in addition to the conditions above:

(ii′) ti+1 ≥ ti + 1 for all i = 1, . . . , k.

3.2 Phase transition
In this section, we first prove a result on the expected

number of paths between two nodes, when delay and
hops are constrained. This result is then used to de-
scribe a phase transition for the appearance of paths in
a random temporal network.

3.2.1 Expected number of paths with constraints

We describe now our main analytical results, which
characterize the expected number of paths with con-
straints on both delay and hop-number. A source u
and a destination v are fixed in advance and without
loss of generality we assume that the packet is ready to
be sent at the source at time t = 0.

Since we are interested in large networks, with a con-
stant contact rate per node, we let N go to infinity and
limit the time and the number of hops allowed in the
paths by a slowly increasing function of N .

Lemma 1. Let us denote the maximum time tN and

number of hops kN of a path allowed in the network.

We assume that they are given as a function of N by:
{

tN = ⌊τ · ln(N)⌋ ,
kN = ⌊γ · tN⌋ = ⌊γ · τ · ln(N)⌋ ,

(1)

where τ and γ are two positive constants.

Let us denote by ΠN the number of paths from u to

v under the above constraints. Then, as N grows large

- for short contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+h(γ))
)

where h : x ∈ [0; 1] 7→ −x ln(x) − (1− x) ln(1− x).

- for long contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+g(γ))
)

where g : x ∈ [0; 1] 7→ (1 + x) ln(1 + x) − x ln(x) .

Proof. This proof follows from the memoryless prop-
erty of geometric and exponential distributions. We
first estimate the probability of success of a path whose
nodes are fixed in advance. The expectation is then
this probability multiplied by the number of possible
combinations. Stirling formula is used to complete the
argument. The complete proof can be found in [3].

Corollary 1. Under the assumption above we have,

in the short contact case
{

E [ΠN ] → 0 if 1/τ > γ ln(λ) + h(γ)
E [ΠN ] → ∞ if 1/τ < γ ln(λ) + h(γ) .

The first result implies that, when 1/τ > γ ln(λ)+h(γ):

P [ There exists a path with constraints (1) ] → 0

All these results holds for the long contact case when

replacing the function h by g.

Proof. The two first results follows directly from
Lemma 1 and Proposition 1. The last result is a conse-
quence from the Markov inequality, which may be writ-
ten here P [ΠN ≥ 1] ≤ E [ΠN ] .

3.2.2 Phase transition in the short contact case

The results from the previous section prove that, de-
pending on the values of the two constant numbers τ
and γ, as well as the contact rate λ, one of the two fol-
lowing statements holds: either there almost surely does



not exist a path satisfying the logarithmic bound (1); or
the number of paths that satisfy these conditions grows
on average to infinity with N . Moreover, one can tell
which statement holds simply by comparing the values
of 1/τ and γ ln(λ) + h(γ).
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Figure 1: Phase transition (short contact case)

This result might be interpreted as follows. Note that
the short contact case implies γ ≤ 1. The function
γ ∈ [0; 1] 7→ γ ln(λ) + h(γ) admits a maximum, that is
given by M = ln(λ + 1) and this maximum is attained
when γ = λ

1+λ
. This is illustrated on Figure 1 where the

value of this function of γ was plotted for three different
values of λ. We can deduce the following dichotomy:

• If τ < 1/M = 1/ ln(1 + λ), then 1/τ is always
larger than γ ln(λ) + h(γ) for any value of γ. As a
consequence, almost surely there does not exist a
path with delay less than τ ln(N) when N is large.

• If τ > 1/ ln(1+λ), then the super-critical condition
from Corollary 1 is verified for γ ∈ [γ1; γ2], an
interval which contains λ

1+λ
. As a consequence,

the average number of paths with delay τ ln(N)
and γτ ln(N) hops is unbounded for large N ,

The delay-optimal path corresponds to the critical
value of τ for which a path is likely to be found. From a
heuristic standpoint, we then expect the delay-optimal

path to have delay t ≈ ln(N)
ln(1+λ) . When τ approaches

this critical value, the interval of possible values for γ
becomes small, and centered around λ

1+λ
. Hence, we ex-

pect that the delay optimal path has hop-number given

by k ≈ λ ln(N)
(1+λ)·ln(1+λ) . As an example, when λ = 0.5, we

expect a delay growing with N as t ≈ 2.47 · ln(N) and
we expect a number of hops k ≈ 1.64 · ln(N).

3.2.3 Phase transition in the long contact case

In the long contact case, the expected number of
paths with delay and hop constraints, for large N , be-
comes large if 1/τ < γ ln(λ) + g(γ). In contrast with
the short contact case, the properties of this function of
γ change with the value of λ (see Figure 2). As a result,
we look at the cases λ < 1 and λ > 1 separately.
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Figure 2: Phase transition (long contact case)

• When λ < 1, the result is very similar to the short
contact case. The function of γ admits a maximum
M = − ln(1 − λ), attained when γ = λ

1−λ
.

Following the same heuristic as the short contact
case, we expect the delay-optimal path to have

delay t ≈ ln(N)
− ln(1−λ) and k ≈ λ ln(N)

−(1−λ)·ln(1−λ) hops.

As an example, when λ = 0.5, we expect a delay
t ≈ 1.69 · ln(N) and the same number of hops.

• When λ > 1, we notice a difference with the short
contact case, since the function of γ is increasing
and unbounded. In that case, for any τ , even an
arbitrary small constant, some paths exist with a
delay less than τ ln(N).

To compute the hop-numbers of these paths, we
proceed as follows. Since 1/τ is large, γ should
then be sufficiently large to satisfy the condition
of the corollary. The function of γ is then close to
its asymptote γ 7→ 1+γ ln(λ). We deduce that the
smallest value of γ verifying the condition is 1−τ

τ ln(λ) ,

hence k = γτ ln(N) given by k ≈ ln(N)/ln(λ).

This last regime should not come as a surprise: in a
static random graph, there exists a phase transition
when λ approaches 1. In particular, when λ is greater
than 1, there almost surely exists a unique connected
component with a large size (see Theorem 5.4 p.109 in
[8]). In our model, since the long contact case allows



one to use any number of hops during the same time
slot, this property implies that there does exist paths
for any arbitrarily small τ . In other words, although
the network is still changing with time, it is essentially
“almost-simultaneously connected”.

3.3 Impact of the contact rate
We have seen above that the value of the contact

rate λ impacts qualitatively the phase transition in the
long contact case, as λ becomes larger than 1. More
generally, when λ is less than 1, it has a direct impact
on the delay of the paths present in a random temporal
network. We note in particular that as λ gets small,
the minimum value of τ for which a path may exist
(respectively 1/ ln(1+λ) and −1/ ln(1−λ) for the short
and the long contact case) becomes large.

In contrast with delay, the hop-number of a path
varies little as λ changes. In particular, when λ be-
comes small, the hop-number for the delay-optimal path
in both short and long contact cases no longer depends
on λ and it converges to ln(N).

short-contact
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Figure 3: Hop-number of the delay-optimal path
seen as a function of the contact rate

One may think of the following explanation for this
result: As λ decreases, the network is essentially com-
pletely disconnected except occasionally for one or sev-
eral disjoint pairs of nodes. Therefore, if we rescale time
by merging periodically a fixed number of time slots to-
gether, the network appears to be very similar (a few
disjoint pairs of nodes) except for an appropriate scal-
ing of the contact rate. As a consequence, decreasing
λ linearly increases the time needed to create a path,
but is unlikely to impact the actual hop-number of this
path. The analysis above makes this intuition rigorous.

We summarize our results in Figure 3. The y-axis
represents the estimate of the hop-number for the delay-

optimal path, normalized by ln(N). We see that in both
dense and sparse regimes, short and long contacts are
in good agreement. They differ only near the critical
value λ = 1, where the long contact case has a singu-
larity. This singularity is not likely to occur in practice
as bandwidth limits the hops in a single time slot.

3.4 Discussions
We have studied the properties of random temporal

networks, as they become large. We have shown that
a source destination pair admits on average many for-
warding paths using a small number of hops and over a
short number of time-slots (i.e. both grow as the loga-
rithm of the network size). Note that the delay of the
optimal paths depends heavily on the contact rate be-
tween the nodes. On the other hand, the hop-number
of these paths seems rather insensitive to changes in
the contact rate λ, with the only exception of the long-
contact case around the value λ = 1.

Inspired by these results, one may compute the diam-
eter of a network using the paths with an optimal de-
lay, and deduce that temporal networks generally have
a small diameter, for almost any contact rate. However,
our model is based on several important simplifications
that may impact in general the delay and hop-number
of paths in opportunistic networks:

• Size: The results above assume that the network
is large enough to apply equivalence class results.

• Homogeneity: We have assumed that nodes con-
tact others uniformly at random. In practice this
is not true as people tend to come close to each
other according to their habits and the communi-
ties of interest that they share.

• Inter-contact time statistics: Since we assume
that contacts between nodes follow Bernoulli or
Poisson Processes, the distribution of time between
two contacts of a pair is light tailed. Previous ex-
periments have shown that this assumption holds
only at the timescale of days and weeks [2, 9].

It is nevertheless possible to extend all of the re-
sults we have obtained so far to contacts described
by a renewal process with general inter-contact
time distribution with finite variance. We expect
this to have a major impact on the delay of a path,
but a relatively small impact on hop-number.

• Stationarity: This model does not include peri-
odic diurnal cycles in the variation of the contact
rate that are typically found in human mobility.
The network may change from a highly mobile and
dense subset of contacts into a sparse and slowly
varying subset of contacts. Again, we expect this
effect to impact the delay of paths in temporal
network, but not much their hop-number.



In the rest of this article, after having formally defined
the diameter of any temporal network, we estimate its
value for mobility traces where in general none of these
assumptions holds. Our goal is to demonstrate that the
fundamental insight brought up by this simple model
translate in practice into similar qualitative trends.

4. NETWORK DIAMETER DEFINITION
AND MEASUREMENT METHOD

In this section, we first formalize our definition of net-
work diameter. We then describe an algorithm to study
efficiently and exhaustively the properties of delay op-
timal paths in opportunistic networks. This algorithm
is instrumental to study the diameter found in large
traces, as done in the next section. It is one of the
contributions of this work.

4.1 Definition of diameter
The diameter of a network is an upper bound on the

number of intermediate hops needed to find at least
one path between any two nodes. What is essentially
new in a temporal network is that one has to specify
whether this path should also satisfy a condition on its
time characteristics. Inspired by the results from the
previous section, we define the diameter such that we
require this path to be almost always optimal.

For k ∈ N ∪ {∞}, and t ≥ 0 let Π(t, k) be 1 if there
exists a path that uses at most k hops and succeeds to
deliver a packet within t seconds, let Π(t, k) be 0 other-
wise. This variable depends on the source, destination,
and starting time of the packet. For ε > 0, we define
the (1−ε)-diameter as the minimum integer k such that

∀t ≥ 0 , P [Π(t, k) = 1 ] ≥ (1 − ε) · P [Π(t,∞) = 1] .

This expression can be interpreted in two ways: in a
stochastic model of a stationary homogeneous network,
like the one we studied in §3, the probability is chosen
according to the distribution of the random variables
Π(t, k) seen at any time between any two nodes. In a
mobility data set, we consider the empirical probability
combining uniformly observations for all sources, desti-
nations and starting times. In both case, this expres-
sion states that, for any delay-constraint, it is almost as
likely to find a successful path within k hops than it is
with any more hops.

One may think of this definition as an example of
“competitive analysis” since the success ratio (i.e., the
probability to find a path within t seconds and at most
k hops) is not described in absolute term, but instead
is compared with an optimal strategy. It helps the def-
inition to adapt to variable environments. However,
it requires one to know beforehand the performance of
the delay-optimal paths at all time, which is why we
formally describe in the rest of this section how they
can be extracted from traces.

4.2 Paths in temporal networks
Each data set may be seen as a temporal network.

More precisely we represent it as a graph where edges
are all labeled with a time interval, and there may be
multiple edges between two nodes. A vertex represents
a device. An edge from device u to device v, with label
[tbeg; tend], represents a contact, where u sees v during
this time interval. The set of edges of this graph there-
fore includes all the contacts recorded by each device.

Paths associated with a sequence of contacts:
We intend to characterize and compute in an efficient
way all the sequences of contacts that are available to
transport a message in the network. Note that we allow
simultaneous contacts to be used, as in the long contact
case defined in §3.1. It is possible to include a positive
transmission delay in all these definitions, we expect
that the diameter will be smaller in that case.

A sequence (ei = (ui−1, ui, [t
beg

i ; tendi ]))i=1,...,n of con-
tacts is valid if it can be associated with a time re-
specting path from u0 to un. In other words, it is
valid if there exists a non-decreasing sequence of times
t1 ≤ t2 ≤ . . . ≤ tn such that tbegi ≤ ti ≤ tendi for all i.
An equivalent condition is given by:

∀i = 1, . . . , n, tendi ≥ max
j<i

{

tbegj

}

. (2)

The time-respecting path associated with a sequence
of contacts (e1, . . . , en) is not unique, but we can char-
acterize all of them as follows. Let us formally define the
last departure of this sequence as LD(e) = mini { tendi };

and the earliest arrival as EA(e) = maxi

{

t
beg

i

}

.

From the definition of a time respecting path, we have

(i) All paths associated with this sequence of contacts
verify t1 ≤ LD and tn ≥ EA.

This property shows that the last departure is in fact
the maximum possible starting time of a path using
this sequence of contacts. Similarly the earliest arrival
denotes the minimum possible ending time for a path
using this sequence. These two optimums are attained,
as one can immediately check the following.

(ii) If LD ≤ EA, there is a path with t1 = LD, tn = EA.

(iii) If EA ≤ LD, there is a path with t1 = t2 = . . . =
tn = t for all t ∈ [EA; LD].

Concatenation: Concatenating two sequences of con-
tacts that both verify Eq. (2) does not necessarily create
a compound sequence that verifies Eq. (2) (see [3] for
a counterexample). We can characterize exactly when
concatenation between two sequences is possible:

(iv) Two sequences (e), (e′) of contacts such that un =
u′

0 and that both verify Eq. (2) can be concate-
nated into a sequence of contacts e

′ ◦ e satisfying
Eq. (2) if and only if EA(e) ≤ LD(e′).



When the condition above is verified, we can deduce
the values LD, EA associated with the concatenated se-
quence as follows: EA(e′ ◦ e) = max(EA(e), EA(e′)), and
LD(e′ ◦ e) = min(LD(e), LD(e′)) (see examples in Fig-
ure 4). Note that EA = tbeg ≤ tend = LD for a sequence
made with a single contact, but sequences with multiple
contacts, like Figure 4 (a), might not verify EA ≤ LD.

(a)

EA1 LD1

EA2 LD2

LDEA

EA2

(v1, v2)

EA1 LD1

(v0, v1)

(v0, v1, v2)

LD EA

LD2

(b)

Figure 4: Two examples of concatenation

4.3 Delay-optimal paths
So far we have been describing a method to char-

acterize when a sequence of contacts supports a time-
respecting path, and when we can concatenate them.
However, computing all of them in general is very costly.
In this section, we formally define paths that are opti-
mal in terms of delay, and therefore are susceptible to
impact the diameter of the network.

Delivery function: As a consequence of (ii) and
(iii), for a message created at u0 at time t, if t ≤ LD

then there exists a path associated with the sequence
of contacts e, that transports this message and delivers
it to un at time max(t, EA). Otherwise, when t > LD,
no path based on these contacts exists to transport the
message. The optimal delivery time of a message cre-
ated at time t, on a path using this sequence of contacts,

is given by del(t) =

{

max(t, EA) if t ≤ LD ,
∞ else.

Similarly the optimal delivery time for any paths that
use one of the sequences of contacts e1, . . . , en is

del(t)=min{max(t, EAk) , 1 ≤ k ≤ n s.t. t ≤ LDk}
(3)

where the minimum of an empty set is equal to ∞.
Optimal paths: We say that a time respecting path,

leaving device u0 at time tdep, arriving in device un

at time tarr, is strictly dominated in case there exists
another path from u0 to un with starting and ending
times t′dep, t

′

arr such that (t′dep ≥ tdep and t′arr ≤ tarr) ,
and if at least one of these inequalities is strict. A path
is said optimal if no other path strictly dominates it.

According to (ii) and (iii) above, among the paths as-
sociated with a sequence of contacts with values (LD, EA)
the optimal ones are the following: if LD ≤ EA, this is the
path starting at time LD and arriving at time EA. Oth-
erwise, when LD > EA, all paths that start and arrive at
the message generation time t ∈ [EA; LD] are optimal.

EA4 > LD4

∞

LD4LD3LD2LD1

time t

del(t)

EA3 < LD3

EA2 = LD2

EA1 < LD1

Figure 5: Example of a delivery function, and
the corresponding pairs of values (LDi, EAi)i=1,2,3,4.

An example of delivery function is shown in Figure 5.
Note that the value of the delivery function (y-axis) may
be infinite. Pairs (LD1, EA1) to (LD3, EA3) satisfy EA ≤
LD, they may correspond to direct source-destination
contacts, or sequence of contacts that all intersect at
some time; the fourth pair verifies LD4 < EA4, hence it
does not correspond to a contemporaneous connectivity.
The message needs to leave the source before LD4, and
remains for sometime in an intermediate device before
being delivered later at time EA4.

4.4 Efficient computation of optimal paths
We construct the set of optimal paths, and delivery

function for all source-destination pairs, as an induction
on the set of contacts in the traces. We represent the
delivery function for a given source-destination pair by
a list of pairs of values (LD, EA). The key element in
the computation is that only a subset of these pairs is
needed to characterize the function del. This subset
corresponds to the number of discontinuities of the de-
livery function, and the number of optimal paths that
can be constructed with different contact sequences.

We use the following observation: We assume that
the values (LDk, EAk)k=1,...,n, used to compute the de-
livery function as in (3), are increasing in their first
coordinate. Then, as k = n, n− 1, . . ., we note that the
k th pair can always be removed, leaving the function
del unchanged, unless this pair verifies:

EAk = min { EAl | l ≥ k } . (4)

In other words, a list such that all pairs verify this con-
dition describes all optimal paths, and the function del,
using a minimum amount of information.

As a new contact is added to the graph, new se-
quences of contacts can be constructed thanks to the
concatenation rule (fact (iv) shown above). This cre-
ates a new set of values (LD, EA) to include in the list



of different source-destination pairs. This inclusion can
be done so that only the values corresponding to an
optimal path are kept, following condition (4).

We show that our method can also be used to iden-
tify all paths that are optimal inside certain classes, for
instance the class of paths with at most k hops. This
can be done by computing all the optimal paths associ-
ated with sequences of at most k contacts, starting with
k = 1, and using concatenation with edges on the right
to deduce the next step.

Compared with previous generalized Dijkstra’s algo-
rithm [1, 7], this algorithm computes directly represen-
tation of paths for all starting times. That is essential
to have an exhaustive search for paths, and estimate
the diameter of a network at any time-scale. We found
algorithm UW2 in [15] to be the closest to ours. We
have introduced here an original specification through
a concise representation of optimal paths which makes
it feasible to analyze long traces with hundred thou-
sands of contacts. Recently we have found that another
algorithm has been developed independently to study
minimum delay in DTN [18]. It works as follows: a
packet is created for any beginning and end of contacts;
a discrete event simulator is used to simulate flooding;
the results are then merged using linear extrapolation.

5. EMPIRICAL RESULTS
In this section we present first our data sets. Then

we analyze the characteristics of optimal paths in op-
portunistic networks using the methodology described
in the previous section.

5.1 Mobility data sets
We use four experimental data sets. Three were col-

lected by the Haggle Project [2]. They include two ex-
periments conducted during conferences, Infocom05, In-

focom06, and one experiment conducted in Hong-Kong.
The fourth data set was collected by the MIT Real-
ity Mining Project [4]. Table 1 summarizes important
characteristics of these data sets.

In the Haggle experiments, people were asked to carry
an experimental device (i.e., an iMote [2]) with them at
all times. These devices log all contacts between experi-
mental devices (i.e., called here internal contacts) using
a periodic scanning every t seconds, where t is called
granularity. In addition, they log contacts with other
external Bluetooth devices (i.e., external contacts) that
they meet opportunistically (e.g., cell phones, PDAs).

In Infocom05, and Infocom06 data sets, the experi-
mental devices were distributed to students attending
the conference. The largest experiment is Infocom06

with 78 participants. By default we are presenting here
results for internal contacts only; results with internal
and external contacts are very similar.

In Hong-Kong, people carrying the experimental de-

vices were chosen carefully in a Hong Kong bar to avoid
social relationships between them. These people re-
turned the iMote at the same bar a week later. As a
consequence, there are only few internal contacts, which
is why we are presenting here results with both internal
and external contacts.

Note that our data sets may not include all oppor-
tunistic encounters between participants of the experi-
ment, because of the time between two scans, hardware
limitations, software parameters, and interference [14].
For the same reasons, it is also possible that some con-
tacts appear shorter than they are. In addition, we do
not have access to the contact history of the external
devices and, as consequence, we miss some of the direct
contacts between them as well. We examine the impact
of this “sampling” effect in §6.

The Reality Mining data set includes records from
Bluetooth contacts and GSM base stations for a group
of cell-phones distributed to 100 MIT students during 9
months. We only show results from the Bluetooth data
set. We also made the same observations on the GSM
data set, as well as other publicly available data sets,
including traces from campus WLAN in Dartmouth [6]
and UCSD [13]. These results can be found in [3].

5.2 Preliminary observations
Figure 6 shows the next time the device is in range of

another device (z-axis) as a function of time (x-axis), for
six representative participants (y-axis) chosen in three
data sets. Hence, the diagonal on this plot represents a
period of uninterrupted contact, while the steps corre-
spond to period with no contact at all.

Arrival Time

6(Infocom)

5(Infocom)

4(Reality Mining)

3(Reality Mining)

2(Hong Kong)

node 1(Hong Kong)

12am
12am

12am Departure Time

infty

12am

12am

12am

Figure 6: Time of the next contact with any
other device, as seen by six participants in Hong

Kong, Reality Mining, and Infocom05.

These results confirm that the data sets we have used
exhibit variable contact characteristics over time. The
nodes in Hong Kong and Reality Mining exhibit low



Experimental data set Infocom05 Infocom06 Hong-Kong Reality Mining BT
Duration (days) 3 4 5 246

Granularity (seconds) 120 120 120 300
Number of experimental Devices 41 78 37 100

Number of internal Contacts 22,459 182,951 560 54,667
Rate of contact (only internal contacts) 1.10 1.70 8.6 ×10−3 15 ×10−3

Number of external Devices 223 4,649 831 N/A
Number of external Contacts 1,173 11,630 2,507 N/A

Rate of contact (incl. external contacts) 1.39 2.53 98 ×10−3 N/A

Table 1: Characteristics of the four experimental data sets

contact rate and they go through periods of complete
disconnection that might sometimes last during more
than one day (e.g. node 1). We also notice some periods
of high contact rate, where the node is always in reach
of one or several devices. These periods are usually
rare and short in Hong Kong and Reality Mining. In
contrast, nodes in Infocom05 are almost always in a
high contact period, except at night.

 1e-04
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12h3h1hour10min2min1min
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D
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Reality Mining
Hong Kong
Infocom05
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Figure 7: Distribution of contact duration

Figure 7 plots distributions of contact duration for
the four data sets. This figure shows that contact dura-
tion vary a lot in all traces (from a couple of minutes up
to several hours). Above 75% of contacts (143,502 con-
tacts) in Infocom06 are only one slot long (i.e. 2 min-
utes). This can be partly explained by the sampling
effect mentioned in §5.1. However we still find around
0.4% (765 contacts) that are longer than one hour. This
has two important consequences: First, a path compu-
tation technique representing each contact as an inter-
val of time, rather than a collection of discrete instan-
taneous contacts, should scale more easily. Second, it is
an issue whether the contacts that are short are actu-
ally useful to carry data. Removing those short contacts
may actually impact the diameter of the network. We
discuss these points further in §6.2.

5.3 Properties of Delay-optimal Paths
Following the methodology described earlier, we com-

pute the sequence of optimal paths found between any
source and destination in the network, varying the max-
imum number of hops in a path between 1 and 4, and
infinity. Figure 8 shows, for a given source-destination
pair in Hong Kong, the delivery function for different
maximum number of hops (i.e. intermediate relays).

Arrival Time

inf 

4 

3 

hops = 2 

single hop

12am12am12am12am12am12am Departure Time

inf

12am

12am

12am

12am

12am

12am

Figure 8: Example of a delivery function, for
a given source-destination pair during Hong-

Kong, for paths with various number of hops.

In the example shown here, there is no path from the
source to the destination when using paths with less
than 3 hops. When 4 hops can be used, the number of
optimal paths increases to 5. We see also that there is
no optimal path with more than 4 hops; the delivery
function is identical when the maximum hop is set to 4
or infinity. [3] contains similar results on other traces.

5.3.1 Distribution of delay

From the sequence of delay-optimal paths we deduce
the delay obtained by the optimal path at all time. We
combine all the observations of a trace uniformly among
all sources, destinations, and for every starting time (in
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Figure 9: CDF function for the optimal transmission delay, observed for all source-destination pairs.

seconds). We present this aggregated sample of obser-
vations via its empirical CDF in Figure 9; the maximum
hop-number varies between 1, 4 or 6, and infinity. Note
that the value of the CDF for a given time t is equal to
the probability to successfully find a path within time
t, when sources, destinations and message generation
time are chosen at random. If no path exists, we in-
clude an infinite value in the distribution. Under each
figure, we indicate the value of the diameter at confi-
dence level 99%. We present the distribution on a [2
minutes,1week] time period, as paths with larger delay
are not likely to be of any use (about this point, and
for the diameter seen at every timescale, see [3]).

We notice first, that for all time-scale and all data
sets, the difference of the CDF between 4 to 6 hops and
unlimited hops is very small (as found by the value of
the diameter). Second, we do observe some difference
across data sets. The Infocom05 data set is by far the
best connected: a direct contact to the destination may
be found within 1 day with probability 65%, whereas
this is the case in less than 3% for both other data sets.
In addition, the relative improvement introduced by us-
ing paths with several hops is not the same depending
on the time-scale and the data sets. This improve-
ment seems almost negligible in Hong-Kong for small
timescales (less than an hour), whereas in Infocom05

this is where it is the largest. For large timescales (more
than 6 hours), we have the exact opposite. We conjec-
ture that it is related to the contact rate, or contact
intensity, between the participating nodes (high in con-
ference, as may be seen in Table 1, low in other data
sets) and explore this further in §6.1. Note that we have
observed variation inside the same data set as well, for
instance when studying the CDF of the minimum de-
lay during day time only (see [3]). The result confirms
the correlation between multi-hop delay improvement
at small time-scale and high contact rate.

These results validate the small value of the diameter

compared to network size, for all the environments we
have studied, as in random temporal networks. We now
wish to study further the impact of the contact rate.

6. MOBILITY CHARACTERISTICS AND
NETWORK DIAMETER

The previous section assumes that all the contacts
found in a trace can be used to exchange information
between two nodes. In practice, some contacts may not
be available for forwarding, because of a collision or if
these contacts are too short. In this section we apply a
“contact removal” technique to a mobility trace: Each
contact is either kept or removed according to a given
rule fixed in advance. In a second step the diameter
and the delay for this network are measured, using the
same methodology as before. One could also add or
move contacts in a trace, but we choose here not to do
that because it seems harder to interpret results where
some contacts are created artificially. We use in this
section the second day of Infocom06, to start from a
data set that contains a large number of contacts.

6.1 Contact rate
We vary the rate of contacts in a network by removing

each contact independently with the same fixed prob-
ability p. Figure 10 plots the empirical CDF of the
minimal delay, or delay obtained with optimal paths,
for Infocom06, before and after probabilistic contact re-
moval with p = 0.9 and p = 0.99. The results shown
are the average of 5 independent experiences.

As expected, removing contacts deteriorates the de-
lay performance, especially for small time-scale. The
probability to reach a destination within 10 minutes
drops from 35% to 0.2% when 99% of the contacts are
removed, while the probability of success within in 6
hours decreases from 90% to 15%. On the other hand
random contact removal does not seem to impact the
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Figure 10: Empirical CDF of minimum delay when contacts are removed randomly (Infocom06)

diameter of the network, which remains under 5 hops.
Moreover, as contacts are removed the improvement in-
troduced by using several intermediate hops becomes
less important at small time-scale, and remains impor-
tant at large time-scale. This confirms the intuition
that improvement at small time scales is related to high
contact rate values (as seen in §5.3.1).

6.2 Contact duration
We now remove each contact if it lasts less than t sec-

onds, where t is a fixed threshold. Figure 11 presents
the empirical CDF of the minimal delay after we re-
move contacts that last less than 2, 10 and 30 minutes
(respectively 75%, 92% and 99% of contacts removed).
Contacts that are less than 2 minutes are those with a
device seen during a single scan. When these contacts
are removed, the success probability is halved at any
time scale, all the results we have obtained remain.

Interestingly the diameter changes when we only keep
contacts that last more than 10 minutes. First note
that the probability to find a path with delay less than
10 minutes remains above 5%, while it was 2% when we
had removed 90% of contacts randomly. In other words,
keeping only the longest contacts maintain more avail-
able paths within a small delay. However this comes at
the cost of an increased diameter.

One explanation for this phenomenon is that contacts
are with different types: long contacts with less mobile
nodes, or familiar people, and short contact where peo-
ple are met that are belonging to any other part of the
group. This result suggests that opportunistic schemes
have to take advantage of short contacts (less than 10
minutes), not only because there are many, but also
because those may help to keep the diameter small.

As a summary, Figure 12 plots the diameter (with
confidence level 99%) for each delay separately. As sug-
gested before, we observe that the diameter decreases
with delay for high contact rate. In contrast, the diam-

eter increases with delay when the contact rate is low.
In between, we find an intermediate regime where the
diameter might be larger for a narrow range of time.
We conjecture this is because the network remains con-
nected but lacks shortcuts between far-away nodes.

7. CONCLUSION
This work establishes the existence of the so-called

“small-world” phenomenon in opportunistic mobile net-
works. From a theoretical perspective, we have proved
that the diameter grows slowly with the network size
in a simple random case. We have also analyzed multi-
ple human contact traces and observed that the network
diameter generally varies between 3 and 6 hops, for net-
works containing from 40 up to a hundred nodes. This
result holds for sparse and dense networks, and the di-
ameter varies only a little when contacts are removed.
This result has important impacts on how to design for-
warding algorithms in opportunistic networks. In par-
ticular, it indicates that messages can be discarded af-
ter a few number of hops without occurring more than
a marginal performance cost.

We now describe some important future extensions
for this work. First, note that Corollary 1 proves that
the expected number of paths becomes large under super-
critical condition, but it does not prove that a path
exists almost surely. Proving this last result is more
difficult, and beyond the scope of this paper as the
classical concentration method known as “second mo-
ment” (e.g. p.54 in [8]) does not apply. Second, this
paper proves that short paths generally exist between
any two nodes, but it does not indicate whether these
paths can be found efficiently by a distributed algorithm
using local information in the nodes. This topic has
been addressed on static graphs with a more complex
model [11], but the extension of these results to tem-
poral networks remains an open problem. Third, the
traces we used are unlikely to follow the simple prop-
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Figure 11: Empirical CDF of minimum delay when short contacts are removed (Infocom06)
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Figure 12: Diameter as a function of delay

erties of random temporal networks. Extending these
results to study the impact of memory and heterogene-
ity in contact processes on the diameter of the network
is an important research direction to pursue.
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