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Abstract Longitudinal behavioral data generally contains a
significant amount of structure. In this work, we identify
the structure inherent in daily behavior with models that can
accurately analyze, predict, and cluster multimodal data
from individuals and communities within the social
network of a population. We represent this behavioral
structure by the principal components of the complete
behavioral dataset, a set of characteristic vectors we have
termed eigenbehaviors. In our model, an individual’s
behavior over a specific day can be approximated by a
weighted sum of his or her primary eigenbehaviors. When
these weights are calculated halfway through a day, they
can be used to predict the day’s remaining behaviors with
79% accuracy for our test subjects. Additionally, we
demonstrate the potential for this dimensionality reduction
technique to infer community affiliations within the
subjects’ social network by clustering individuals into a
“behavior space” spanned by a set of their aggregate
eigenbehaviors. These behavior spaces make it possible to
determine the behavioral similarity between both individu-
als and groups, enabling 96% classification accuracy of
community affiliations within the population-level social

network. Additionally, the distance between individuals in
the behavior space can be used as an estimate for relational
ties such as friendship, suggesting strong behavioral
homophily amongst the subjects. This approach capitalizes
on the large amount of rich data previously captured during
the Reality Mining study from mobile phones continuously
logging location, proximate phones, and communication of
100 subjects at MIT over the course of 9 months. As
wearable sensors continue to generate these types of rich,
longitudinal datasets, dimensionality reduction techniques
such as eigenbehaviors will play an increasingly important
role in behavioral research.
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Introduction

While discrete observations of an individual’s idiosyncratic
behavior can appear almost random, typically there are
repeating and easily identifiable routines in every person’s
life. These patterns become more apparent when the
behavior is temporally, spatially, and socially contextual-
ized. However, building models of long-term behavior has
been hampered due to the lack of contextualized behavioral
data. Additionally, traditional Markov models work well for
specific set of behaviors, but have difficulty incorporating
temporal patterns across different timescales (Clarkson
2002). We present a new methodology for identifying the
repeating structures underlying behavior. These structures
are represented by eigenbehaviors, the principal compo-
nents of an individual’s behavioral dataset.

To capture these characteristic behaviors, we compute
the principal components of an individual’s behavioral data.
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The principal components are a set of vectors that span a
‘behavior space’ and characterize the behavioral variation
between each day. These eigenbehaviors are the eigenvec-
tors of the covariance matrix of behavior data; the heavily
weighted vectors generally represent a type of repeated
behavior, such as sleeping in late and going out on the
town. A linear combination of an individual’s eigenbehav-
iors can accurately reconstruct the behavior from each day
in the data. However, we show that our subjects’ behavior
can be approximated with 90% accuracy using only the six
primary eigenbehaviors—the ones that have the largest
eigenvalues and account for the most variance. By providing
this type of behavioral caricature, it is possible for the
primary eigenbehaviors to be used to accurately predict an
individual’s subsequent behavior. We subsequently show
how eigenbehaviors can be applied not only to individual
behavior, but also be used to characterize the behavior of
communities within the population’s social network. Partic-
ular groups of friends can have their own collective
‘behavior space’ which corresponds to the common behav-
iors of the community. How well these behavior spaces
approximate an individual’s behavior depends on how the
individual is similar to others in her social network.
Measuring the Euclidean distance between an individual’s
behavior and the behavior space of a specific community
within the social network can be used to identify affiliations,
relationships, and similarity between individuals.

There has been an extensive number of research efforts
focused on modeling individual and group behaviors. Due
to the breadth of these efforts, we will be limited here to
providing only a sample of related research projects. Some
closely related work in the Computer-Supported Collabo-
rative Work (CSCW) community comes from techniques of
Begole et al. for “rhythm modeling” within the workplace.
Through analysis of the computer usage of workgroup
members, Begole et al. demonstrated the potential to extract
patterns in behavior of both individuals and teams (Begole
et al. 2003). Although primarily used for location-based
applications, electronic badges can also generate rich data
on individual behavior within a workplace. The exposed
manner in which they are worn allows line-of-sight sensors,
such as infrared (IR), to detect face-to-face interactions.
Some of the earlier badge work to sense human behavior
was done in the 1980s and early 1990s at Olivetti Labs
(Want et al. 1992). Developments in ultrasound tracking
have greatly improved the ability to localize the badge,
enabling a wide range of just-in-time information applica-
tions (Schilit et al. 1993; Addlesee et al. 2001). Fogarty et
al. expands this work by using low level sensor data to
establish extremely accurate estimates of human interrupt-
ibility (Fogarty et al. 2005).

Outside the office, GPS has been used for location
detection and classification (Ashbrook and Starner 2003;

Liao et al. 2004; Wolf et al. 2001), but the line-of-sight
requirements generally prohibit it from working indoors. As
an alternate approach, there has been a significant amount
of literature regarding correlating cell tower ID with a
user’s location (Bar-Noy and Kessler 1993; Bhattacharya
and Das 1999; Kim and Lee 1996). Laasonen et al. describe
a method of inferring the significant locations from the cell
towers by calculating graph metrics from the adjacency
matrix formed by proximate towers. They were able to
show reasonable route recognition rates and most impor-
tantly, succeeded in running their algorithms directly on the
mobile phone (Laasonen et al 2004). In the activity and
pattern recognition communities, there has been a variety of
work using techniques to estimate an individual’s location
and projected trajectory given a variety of sensor data such
as GPS, wifi base-station positioning, and accelerometer
data. Hightower and Borriello along with Patterson et al.,
among others, have demonstrated the potential of particle
filters for route recognition (Hightower and Borriello 2004;
Liao et al 2004; Patterson et al 2003).

In machine vision and computer graphics, eigenrepre-
sentations have become one of the standard techniques for
many tasks. While behavior is perhaps not as characteristic
of an individual as a face, many analogies hold between the
analysis of an individual’s behavior and his facial features.
Just as digital imaging created a wealth of data to train and
test facial analysis tools, the explosive growth of mobile
phones is beginning to enable much more comprehensive
computational models of complex human behavior. Eigen-
decomposition is used in face and object recognition
(Turk and Pentland 1991), shape and motion description
(Pentland and Sclaroff 1991), and data interpolation (Pentland
1992) and computer animation (Pentland and Williams 1989).
More recently it has been used in a wide variety of robotic
and control applications.

Materials and methods

To apply eigendecomposition for behavior and social
network analysis, a large repository of behavioral data is
necessary. In this paper, we make use of the publically
available Reality Mining dataset representing the behavior
of 100 subjects at MIT during the 2004–2005 academic
year (Eagle and Pentland 2006). Seventy-five of the
subjects were either students or faculty in the same
laboratory, while the remaining 25 were incoming students
at the business school adjacent to the laboratory. Of the 75
students and staff at the lab, 20 were incoming masters
students and five were incoming freshman. The data were
collected using 100 Nokia 6600 smart phones pre-installed
with a version of the Context application from the
University of Helsinki (Raento et al. 2005). The informa-
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tion collected included call logs, Bluetooth devices in
proximity, cell tower IDs, application usage, and phone
status (such as charging and idle). The study generated
approximately 400,000 h of data on subjects’ location,
proximity, communication, and device usage behavior.

The collection of deeply personal human behavioral data
raises justifiable concerns over privacy. While these con-
cerns are legitimate and should be explored, the dataset we
are using was collected during a social science experiment,
conducted with human subject approval and consent of the
subjects. Additionally, these techniques for extracting the
underlying structure inherent within behavioral data are not
only applicable to human populations. Eigenbehaviors are
suitable for analysis of any regularly sampled behavioral
data, making it also a potential analysis tool for longitudinal
studies of animal behavior, where concerns about privacy are
greatly reduced (Krause et al. 2009).

Finally, this paper will not make the claim that the
subjects in the Reality Mining study are a representative
sample of society. However, regularity in behavior is not an
exclusive trait of people at MIT. For many people,
weekdays consist of leaving home in the morning, traveling
to work, breaking for lunch, and returning home in the
evening. People’s daily routines are typically coupled with
routines across other temporal scales, such as going out on
the town with friends on Saturday nights, or spending time
with family during the December holidays. Animals exhibit
similar behavior patterns, both on a daily and seasonal
cycle. The remainder of this paper will be focusing on a
particular technique to quantify these universal patterns in
the behavior of individuals and communities within a social
network.

While we have successfully applied our eigenbehavior
technique to a wide range of multimodal data, for purposes
of clarity in this section we will only focus on temporal
location data. For this example, we characterize person I by
data shown in Fig. 1 as B(x,y), a two-dimensional D by 24
array of location information, where D is the total number
of days that person I has been in the study. B contains n

labels corresponding to behavior, where in our case these
labels are {Home, Elsewhere, Work, No Signal, Off}. It has
been previously shown that these labels were generated
with a conditioned Hidden Markov Model with over 95%
accuracy (Eagle and Pentland 2006), and while there still is
noise in the signal, for our purposes we will take them as
ground truth. To perform the analysis, we convert B into B’,
a D by H (where H is 24×n) array of binary values, shown
in Fig. 1. Γ i is row i of B’ and represents an individual’s
behavior over day i; Γ i can be represented by a single point
in an H-dimensional space. A set of D days can then be
described as a collection of points in this large space.

Due to the significant amount of similar structure in
most people’s lives, days are not distributed randomly
though this large space. Rather, they are clustered, allowing
the individual to be described by a relatively low
dimensional ‘behavior space’. This space is defined by a
subset of vectors of dimension H that can best characterize
the distribution of behaviors and are referred to as the
primary eigenbehaviors. The top three eigenbehaviors that
characterize the individual shown in Fig. 1 are plotted in
Fig. 2. The first eigenbehavior corresponds to either a
normal day or a day spent traveling (depending on whether
the associated weight is positive or negative). The second
eigenbehavior has a corresponding weight that is positive
on weekends and negative on weekdays, analogous to the
characteristic behavior of sleeping in and spending that
night out in a location besides home or work. The third
eigenbehavior is emphasized when the subject is in
locations with poor phone reception.

Results

Eigenbehaviors for individuals

For each subject, the Reality Mining data set provides us
with a set of days’ behaviors, Γ1,Γ2,Γ3,...ΓD, for a total of
D days, where an individual day’s behavior vector, Γ1, has

Fig. 1 Transformation from B
to B’. The plot on the left
corresponds to the subject’s be-
havior over the course of
113 days for five situations. The
same data can be represented as
a binary matrix of 113 days (D)
by 120 (H, which is 24 multi-
plied by the five possible
situations)
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H dimensions. Following the same notation as Turk and
Pentland, the average behavior of the individual is
Ψ ¼ 1

D

PD
n¼1 Γ n. And Φi ¼ Γ i � Ψ is the deviation of an

individual day from the mean. Principal components
analysis is subsequently performed on these vectors
generating a set of H orthonormal vectors, u, which best
describes the distribution of the set of behavior data when
linearly combined with their respective scalar values, λ.
These vectors and their corresponding scalars are the
eigenvectors and eigenvalues of the covariance matrix of
ϕ, the set’s deviation from the mean.

C ¼ 1

H

XH

n¼1
ΦnΦ

T
n ¼ AAT

where the matrix A ¼ Φ1;Φ2;Φ3; :::ΦM½ �. Each eigenbehav-
ior can be ranked by the total amount of variance it accounts
for in the data, which is essentially the associated eigenvalue.
The vectors with the highest eigenvalues are considered an
individual’s primary eigenbehaviors. The next section will
discuss how these primary eigenbehaviors can be used for
behavioral data reconstruction and prediction.

An individual’s primary eigenbehaviors represent a
space upon which all of his days can be projected with
differing levels of accuracy. Figure 3 shows the projection
of each day onto spaces created using an increasing number
of these primary eigenbehaviors. It can be seen that while
the reconstruction of each day using 40 eigenbehaviors for
this particular subject nearly perfectly matches the original

data, six eigenbehaviors captures a significant portion of the
variance in the individual’s behavior. Figure 4 shows the
accuracy of representing behavior using a varying number
of eigenbehaviors for the three different groups of subjects
in the Reality Mining study. It is interesting to note that the
space formed by the six primary eigenbehaviors describes
individuals within the business school community of the
social network with 90% reconstruction accuracy, but the
senior lab students with 96% accuracy. This leads us to the
conclusion that senior lab students exhibit more behavioral
regularity than their business school counterparts.

While there are many techniques for creating predictive
models that can generate a sequence of future data given
training, eigendecomposition differentiates itself in an
important way. Although many of life’s patterns can be
modeled as a Markov process, whereby the future state
depends on the current state and observational data, these
types of models have difficulty capturing correlations that
span beyond several time slices. For many subjects,
sleeping late in the morning is coupled in the same
eigenbehavior with going out that evening—a hard pattern
to recognize when using traditional models, but one that is
highlighted when generating an individual’s characteristic
behavior spaces.

Figure 4 shows that the top six primary eigenbehaviors
provide a characteristic behavior space from which an
individual deviates less than 10% of the time. When these
six eigenbehaviors are calculated for an individual, it

Fig. 2 The top three eigenbe-
haviors, [u1, u2, u3], for Subject
4. The first eigenbehavior (rep-
resented with the first column of
three figures) corresponds to
whether it is a normal day or
whether the individual is travel-
ing. If the first weight is posi-
tive, then this eigenbehavior
shows that the subject’s typical
pattern of behavior consists of
midnight to 9:00 at home, 10:00
to 20:00 at work, and then the
subject returns home at approx-
imately 21:00. The second
eigenbehavior (and similarly the
middle column of three figures)
corresponds to typical weekend
behavior. It is highly likely the
subject will remain at home past
10:00 in the morning and will be
out on the town (‘elsewhere’)
later that evening. The third
eigenbehavior is most active
when the individual is in loca-
tions where the phone has no
signal
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becomes possible to infer the projection of an entire day
using only information from a portion of that day. We use
these approximations to develop predictions of an individ-
ual’s subsequent behavior. To test this concept, for each
subject we calculated a behavior space using the individ-
ual’s six primary eigenbehaviors and weights generated
from the first 12 h of a subject’s day. Through the linear
combination of these weights and the subject’s primary
eigenbehaviors, a 12-element vector is created containing
one of three location states (home, work, elsewhere). Each

element in the vector corresponds to the predicted location
of the subject for the subsequent hours from noon to
midnight. Figure 5 shows the distribution of accuracy
scores for the subjects when the sequence of 12 h is
compared with the subject’s actual location over the same
12 h.

Eigenbehaviors for social networks

In the previous section we have demonstrated that we can
use data from Bluetooth-enabled mobile phones to discover

Fig. 5 Behavior prediction accuracy for behaviors from noon to
midnight given the previous 12 h of behavioral data and the six
primary eigenbehaviors for each subject, an average of 79% accuracy
is obtained

Fig. 4 Approximation error (y-axis) for the different subject groups as
a function of the number of eigenbehaviors used (x-axis) with the
states off and no signal removed

Fig. 3 Behavior approximation of 115 days using a varying number of eigenbehaviors. The left-most figure corresponds to behavioral
approximation using only one eigenbehavior. The approximation accuracy increases with the number of eigenbehaviors
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a great deal about an individual’s patterns of activities by
reducing these complex behaviors to a set of principal
components, or eigenbehaviors, characteristic of the indi-
vidual. In this section, we will demonstrate the possibility
of inferring the relationships and community affiliations
within the social network of the population based on a
comparison of these eigenbehaviors.

The social network of the subjects in the Reality Mining
study has a high amount of clustering based on affiliation,
as shown in Fig. 6. It is reasonable to assume that each of
these different groups of subjects (Sloan business school
students, Media Lab incoming students, Media Lab senior
students, and MIT staff) have characteristic behaviors
associated with the community affiliation. It is possible
now to identify the eigenbehaviors of these particular
communities within the social network and project individ-
uals onto this behavior space. How well the community’s
behavior space explains an individual’s behavior, as
measured by the Euclidean distance between the individual
and the principal components of the community’s behavior
space can then be used to infer the individual’s affiliation.
Additionally, we demonstrate that the distance between a
pair of subjects within the community is proportional to the
probability the two individuals are connected within the
friendship network.

The mathematics behind applying the eigenbehavior
technique to a community of M actors is identical to that
described in Section “Materials and methods”, with the
exception that several of the variables have different
interpretations. We now use a matrix B with each row
corresponding to the average behavior of a particular
individual in the community. After a similar transformation
to B’, a matrix of M by H, it becomes possible to generate

eigenbehaviors of the community as a whole. The primary
eigenbehaviors correspond to the community’s characteris-
tic behaviors.

While we later will show results that incorporate a
variety of data including location, phone usage, and people
in proximity into the community behavior space, for
explanative purposes, we will show data related to solely
Bluetooth proximity events for the three main groups of
subjects: incoming business school students, incoming lab
students, and senior lab students. Figure 7 shows the mean
behaviors for each group, Ψ j, while Fig. 8 depicts the top
three eigenbehaviors ½u j

1; u
j
2; u

j
3� of each group.

As expected, the top eigenvector in each of the groups
closely corresponds to the mean. For individuals within the
business school community, there is particular emphasis
during the school’s coffee breaks at 10:30. Besides this
emphasis, the other pattern is simply reflective of the
standard course times (nine until noon, a lunch break, and
the subsequently afternoon courses). The lab students have
less of an enforced structure on their day. While the entire
group of incoming lab students is taking courses, along
with approximately half of the senior students, these
courses can be selected by the students from anywhere in
the institution and typically are not attended by many other
subjects. However, each of the lab students has an office
within the lab and typically works from there when not in
class. While the two groups of lab students share virtually
identical principal eigenbehavior, the secondary eigenbe-
haviors are more telling about the differences. It is common
knowledge around the lab that incoming students tend to
get overwhelmed by over-commitments to coursework and
research leading to late nights at the workplace. This
characteristic is emphasized from the group’s second and
third eigenbehaviors with an emphasis from 20:00 to 2:00.

When a community’s behavior space is created from the
aggregate behavior of its individual members, it becomes
possible to determine the similarity of the members by
identifying how accurately their behavior can be approx-
imated by the community’s primary eigenbehaviors.
Because the Reality Mining dataset contains data for
both incoming and senior students, it is possible to verify
the onset of concordance between the incoming lab
students and the rest of the laboratory. Likewise, it is
possible to distinguish communities by their aggregate
behavior, such as business school students and engineer-
ing students. An individual’s behavior (Γ) can be
projected onto the j community’s behavior space through
the following transformation.

w j
k ¼ u j

k Γ � Ψ j

� �

for k=1,..., H and Ψ j is the mean behavior of the
community. Ψ j for Bluetooth encounters of senior lab

Fig. 6 The social network of the population. The blue circles
represent the community of business school students. The red
triangles are senior lab students, the orange diamonds represent the
incoming students, and the white squares represent the laboratory staff
and faculty
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students, incoming lab students, and business school
students is shown in Fig. 7.

These weights form a vector ΩT
j ¼ w j

1;w
j
2;w

j
3; . . .w

j
m0

� �

which is the optimal weighting scheme to get the new
behavior as close as possible to the behavior space. Each
element in the vector gives a scalar value corresponding to
the amount of emphasis to place on its respective
eigenbehavior when reconstructing the original behavior
Γ. By treating the eigenbehaviors as a set of basis
behaviors, the vector ΩT, can be used to determine which
person k the individual is most similar to in a particular
community, j. We follow the method of Turk and Pentland

by using Euclidean distance as our metric for describing
similarity.

e2jk ¼ Ω j��� Ω j
k

��2

where Ω j
k are the reconstruction weights for the kth person in

community j. Figure 9 shows values for εj, the distance
between one business school student and other subjects. This
method can also be applied to data from a single individual
to determine which days are most like the ongoing one.

Instead of comparing one individual to another, it is also
possible to determine how much an individual ’fits in’ with

Fig. 8 The top three eigenbe-
haviors ½u j

1; u
j
2; u

j
3� for each

group, j, comprised of the in-
coming business school stu-
dents, incoming lab students,
and senior lab students. The
business school coffee break at
10:30 is highlighted in their first
eigenbehavior. Comparing the
second eigenbehaviors for the
Media Lab students, it can be
seen that the incoming students
have developed a routine of
staying later in lab than the more
senior students

Fig. 7 The average number of
Bluetooth devices seen, Ψj, for
the senior lab students, incom-
ing lab students, and incoming
business school students. The
values in these plots correspond
to the total number of devices
discovered in each hour of
scanning over the course of a
day (with time of day on the
x-axis)
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the community as a whole by determining the distance ε as
the difference between the individual’s projection onto the
behavior space of a community and the individual’s original
behavior. We again use Euclidian distance to calculate the
difference between the mean-adjusted behavior, Φ j ¼
Γ � Ψ j, and its projection onto the community’s behavior

space Φ j
b ¼

PM
0
j

i¼1 w
j
i u

j
i .

"2j ¼ Φ j��� Φ j
b

��2

When determining the affiliation of an individual, there
can be four possible outcomes, as shown on Fig. 10. The
dark gray plane represents the community behavior space,
containing any set of behaviors that would constitute being
part of the community. The first option has the input
behavior on the behavior space as well as proximate to
other individuals, Ωj3, within the behavior space. The

second example can be approximated accurately by the
behavior space, but there are no other individuals in the
same area of the space. Input three appears to have
something in common with some members in the com-
munity’s behavior space; however, it contains behavioral
elements that cannot be reconciled within the behavior
space. Lastly, four is a disparate input neither near the
behavior space nor any individual in the space.

Until now, we have been focusing on analysis of
Bluetooth or location data independently, but this technique
enables us to aggregate multimodal datasets. Instead of
limiting a community to only one behavior space, for our
affiliation classification we generate a set of primary
eigenbehaviors for each type of data captured. This enables
us to determine every group’s Bluetooth, location, and
phone usage behavior space. When these spaces are
computed, it is subsequently possible to calculate each

Fig. 9 Values corresponding to
ej, the Euclidian distance be-
tween each subject and a single
business school student. The
distance between two individu-
als reflects the similarity of their
behavior

j

j

2 

1 

3 4 

2
u  

Group j Behavior Space  

2j
u

1
Ω  

2j
u

2
Ω  

2j
u

3
Ω  

4
ε  

j
j

j

Fig. 10 A toy example of com-
munity behavior space. Individ-
uals 1 and 2 are on the behavior
space and can be affiliated with
the community. Individual 1 can
also be affiliated with the par-
ticular clique, Ω j

3. There is
much more distance between 3
and 4 and the behavior space,
and therefore their projections
onto the behavior space do not
yield an accurate representation
of the two people
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individual’s Euclidian distance from each space. Figure 11
shows the distances for each subject from the three business
school behavior spaces. We used cross-validation to prevent
the test subject’s data from contributing to the generated
behavior space, and were able to classify whether each
subject was a member of the business school community
with 96% accuracy.

Lastly, the projected clustering of individual subjects
onto the behavior space shown in Fig. 11 has an additional
interesting characteristic beyond affiliation inference. By
simply measuring the distance between two individuals
within this behavior space, it becomes possible to estimate
the probability the pair is connected within the social
network of the population. Figure 12 shows that the
probability of friendship tails off dramatically as distance
increases, until it converges on a steady-state probability of
friendship that appears to be irrespective of the behavioral
differences between the pair. This relationship follows a
distribution qualitatively similar to that discovered within
an online friendship network and the physical, geographic
distance between each pair of users (Liben-Nowell et al.
2005).

Discussion

We have shown that eigenbehaviors can be used effectively
to extract the underlying structure in the daily patterns of
human behavior, predict subsequent behavior, infer com-
munity affiliations, and estimate the probability of a tie
within the friendship network of the population. We are
currently building applications that leverage this new
technique in two main realms, behavior-based segmentation
and data interpolation.

We have found that communities within a population’s
social network tend to be clustered within the same
behavior space. It seems reasonable that this type of
behavioral homophily is present in a variety of social
networks. It should be possible for practitioners, using
virtually any type of longitudinal behavior data, to similarly
quantify the behavior space of a particular group or
individual of interest using the eigenbehaviors technique
described above. If strong behavioral homophily is present
in the data, it should equally be possible to infer an
individual’s affiliations by quantifying the individual’s
distance from a community’s behavior space.

When collecting large amounts of data from many
subjects of an extended period of time, data loss is
unavoidable. The Reality Mining logs account for approx-
imately 85.3% of the time since the phones have been
deployed. Approximately 5% of this is due to data
corruption, while the majority of the missing 14.7% is
due to the phones being turned off. However, with a set of
these characteristic eigenbehaviors defined for each indi-
vidual, it becomes possible to generate a rich synthetic
dataset from the approximations of the individual’s eigen-
values over a particular time window of interest. Using the
behavior space generated from an individual’s six primary
eigenbehaviors, we have shown we can generate a 12-h
chunk of data with 79% accuracy. If we incorporated the
individual’s future behavioral data as well as the past, this
accuracy should continue to increase.

It is inevitable that the next generation of wearable
sensors will be appropriate for the long-term passive
monitoring of an increasing set of living creatures. The

Fig. 12 Behavioral distance vs. probability of friendship. The
Euclidean distance between every subject’s projection onto the
behavior space is calculated and compared with whether a friendship
was reported between the two individuals. The figure suggests strong
behavioral homophily, that is, subjects with similar behavior are more
likely to be friends

Fig. 11 The cross-validated distance ej between the three groups of
students and the Bluetooth, location, and phone usage business school
behavior spaces
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behavioral data generated from these new devices will
require fundamentally new techniques for analysis. To
analyze data of such magnitude, eigendecompositions are
useful because they provide a low-dimensional character-
ization of complex phenomena. This is because the first few
eigenvectors of the decomposition typically account for a
very large percentage of the overall variance in the signal.
Because only few parameters are required, it becomes
easier to analyze the individual and community behavior,
and thus possible to predict the behavior of the individual
elements as well as the behavior of the system as a whole.

These unique properties make eigenbehaviors ideal as a
representation of daily movements, interactions, and com-
munication behaviors. The low dimensional representation
provided by the eigendecomposition will allow us to
characterize an individual quickly, match him to similar
individuals, and predict his behavior in the near future. The
technique also provides us with a representation of the
behavior characteristic of a community as a whole and
enables us to estimate the probability of a tie within the
larger social network of the population. As rich, longitudi-
nal behavioral data becomes increasingly available, it is our
hope that these techniques will prove useful to researchers
studying a wide range of human and animal behavior.
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