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Abstract. In this work we identify the structure inherent in daily human behavior with 
models that can accurately cluster, analyze and predict multimodal data from individu-
als and groups. This approach capitalizes on the large amount of rich data on human 
behavior which we have collected by using mobile phones to continuously log location, 
people in proximity, and communication of 100 subjects over the course of nine 
months. We show that it is possible to accurately model many people's lives with just a 
few parameters – thus allowing accurate prediction of their future behavior from lim-
ited observations of their current behavior – as well as to create a similarity metric 
between individuals and groups that allows accurate identification of group affiliation 
and behavioral 'style'. We conclude with a discussion of the potential ramifications of 
eigenbehaviors to the field of Ubiquitous Computing. 

1   Introduction 

Although human behavior can appear random, typically there are repeating and easily 
identifiable routines in every person's life. These can be found on a range of time-
scales: from the daily routines of getting out of bed, eating lunch, and driving home 
from work; to weekly patterns such as the Saturday afternoon softball games; to 
yearly patterns like seeing family during the holidays in December. While our ulti-
mate goal is to create a predictive classifier that can perceive aspects of a user's life 
more accurately than a human observer (including the actual user), we begin by build-
ing simple mechanisms that can recognize many of the common structures in the 
user's routine.   

Building models of long-term human behavior has been difficult due to the lack of 
continuous, rich data, as well as the perceived complexity of an idiosyncratic individ-
ual. Additionally, traditional Markov models work well for specific set of behaviors, 
but have difficulty incorporating temporal patterns across different timescales [5]. We 
present a new methodology for identifying the repeating structures underlying typical 
daily human behavior. These structures are represented by a set of vectors of charac-
teristic behaviors called eigenbehaviors, principle components of the complete behav-
ioral dataset.  

An individual's behavior over a specific day can be approximated by a weighted 
sum of his or her primary eigenbehaviors. When these weights are calculated halfway 



through a day, they can be used to predict subsequent behaviors with accuracies for 
some users of over 90%. This is not only useful as a predictive tool, but also as a 
method of filling in gaps in the data set when the user turned the phone off. Addition-
ally, groups of interacting people can be clustered into different "behavior spaces" 
spanned by a set of their aggregate eigenbehaviors. We will show that these behavior 
spaces can be used to reliably identify the group affiliations of an individual through a 
simple mathematical transformation described in section 4.2.   

1.1   Background work 

While behavior is perhaps not as characteristic a signature of an individual as a face, 
many analogies hold between analysis of an individual's behavior and facial features.  
Just as digital imaging created a wealth of data to train and test facial analysis tools, 
the explosive growth of location-aware devices, such as mobile phones, is beginning 
to enable much more comprehensive computational models of complex human behav-
ior.   
 
Location-aware Behavior Tracking Devices. Although primarily used for location-
based applications, electronic badges can also generate rich data on individual behav-
ior within a workplace. The exposed manner in which they are worn allows line-of-
sight sensors, such as infrared (IR), to detect face-to-face interactions. Some of the 
earlier badge work to sense human behavior was done in the 80's and early 90's at 
EUROPARC and Olivetti Labs [18]. Recent developments in ultrasound tracking 
have greatly improved the ability to localize the badge, enabling a wide range of just-
in-time information applications [16,1].  

Outside the office, GPS has been used for location detection and classification 
[2,11,19], but the line-of-sight requirements prohibit it from working indoors. As an 
alternate approach, there has been a significant amount of literature regarding corre-
lating cell tower ID with a user's location [3,4,9]. Laasonen et al. describe a method 
of inferring the significant locations from the cell towers by calculating graph metrics 
from the adjacency matrix formed by proximate towers. They were able to show 
reasonable route recognition rates, and most importantly succeeded in running their 
algorithms directly on the mobile phone [10]. 
 It is a challenge to get accurate location with only the ID of the user's current 
tower, particularly since towers have a wide range and in urban areas it is not un-
common to be within range of over a dozen. If we were able to get information about 
all the current visible towers and their respective signal strengths, the location classi-
fication problem would become easier, although multipath propagation still makes it 
difficult to accurately estimate location. We have therefore incorporated use of static 
Bluetooth device ID as an additional indicator of location that can be used in the same 
manner as cell tower ID. We have found that use of the BTIDs provides a very sig-
nificant improvement in user localization, especially within office environments.  

This fusion of data is particularly appropriate due to the fact that cellular signals 
tend to disappear in the middle of large buildings - exactly the place where there are 
static Bluetooth devices such as desktop computers. On average, the subjects in our 



study were without reception 6% of the time. During this time with no signal, they 
spent 21% of it within range of a static Bluetooth device, and 29% near another mo-
bile phone.   We expect coverage by Bluetooth devices to increase dramatically in the 
near future as Bluetooth devices become more common in computers and electronic 
equipment, so that use of Bluetooth ID may become as important as cell tower map-
ping for estimation of user location. 

Eigendecomposition for Machine Understanding. In machine vision and computer 
graphics, eigenrepresentations have become one of the standard techniques for many 
tasks. They are used in face and object recognition [17], shape and motion description 
[12], data interpolation [13], and computer animation [14].  More recently they have 
been used in a wide variety of robotic and control applications.    

2   Reality Mining: Complex Human Behavior from Mobile Phones 

For over a century, social scientists have conducted surveys to learn about human 
behavior. Surveys, however, are susceptible to issues such as bias, sparsity of data, 
and lack of continuity between discrete questionnaires.  It is this absence of dense, 
continuous data that also hinders the machine learning and agent-based modeling 
communities from constructing more comprehensive predictive models of human 
dynamics. Over the last two decades there has been a significant amount of research 
attempting to address these issues by building location-aware devices capable of col-
lecting rich behavioral data. While these projects were relatively successful, by de-
pending on a limited supply of custom hardware, they were unable to scale due to 
limitations on the supply of custom hardware. However, with the rapid technology 
adoption of mobile phones comes an opportunity to collect a much larger dataset on 
human behavior [8]. The very nature of mobile phones makes them an ideal vehicle to 
study both individuals and organizations: people habitually carry their mobile phones 
with them and use them as a medium for much of their communication. In this paper, 
we capture all the information to which the phone has access (with the exception of 
content from phone calls or text messages) and describe how it can be used to provide 
insight into both individual and collective behaviors. 

2.1  The Dataset  

Our study consists of one hundred Nokia 6600 smart phones pre-installed with sev-
eral pieces of software we have developed as well as a version of the Context applica-
tion from the University of Helsinki [15]. Seventy-five users are either students or 
faculty in the same laboratory, while the remaining twenty-five are incoming students 
at the business school adjacent to the laboratory. Of the seventy-five users at the lab, 
twenty are incoming masters students and five are incoming freshman. The informa-
tion we are collecting, which includes call logs, Bluetooth devices in proximity, cell 
tower IDs, application usage, and phone status (such as charging and idle), is primar-



ily obtained from the Context application. The study will generate data collected by 
one hundred human subjects over the course of nine months and represents approxi-
mately 500,000 hours of data on users' location, communication and device usage 
behavior.1 Upon completion of the study, we plan to release a public, anonymous 
version of the data set for other researchers to use [6]. 

While our users' behavior is quite diverse, one universal similarity is the critical 
role time plays. To model human behavior over time, we have developed a Hidden 
Markov Model conditioned on both the hour of day as well as weekday or weekend. 
A straightforward Expectation-Maximization inference engine was used to learn the 
parameters in the model, and to perform clustering in which we defined the dimen-
sionality of the state space. After training our model with one month of data from 
several subjects, we were able to provide a good separation of ({office}, {home}, {else-
where}) clusters, typically with greater than 95% accuracy. Examination of the data 
suggests that non-linear techniques will be required to obtain significantly higher 
accuracy.  However, for the purposes of this paper, this accuracy has proven suffi-
cient.  

 

Fig 1. A set of days of a 'low entropy' subject based on celltower ID. The 'hot spot' in mid-day 
is when the subject is at the workplace. 

 
We attempt to quantify the amount of predictable structure in an individual's life by 
using an entropy metric. People who live high-entropy lives tend to be more variable 
and harder to predict, while low-entropy lives are characterized by strong patterns 
across all time scales. As we will show, low entropy subjects also require few pa-
rameters to reasonably model their daily lives. Figure 1 depicts the patterns in cell 
tower transitions encountered each hour for a 'low entropy' subject. It is clear that the 
subject is typically at home during the evening and night until 8:00, when he com-

                                                           
1 At the time of submission one hundred human subjects have been participating in the study 

for time periods ranging from two to seven months, representing over 250,000 hours of data. 
The total duration of the study will be for nine months, and all users will have been enrolled 
for at least six months. 



mutes in to work, and then stays at work until 17:00 when he returns home. Figure 2 
displays the number of Bluetooth devices the subject has encountered each hour of 
the day. For many subjects this number is indicative of people being proximate at 
work, while for others it is also a sign of socializing after hours.  
 

 
Fig 2. The frequency of Bluetooth encounters for a 'low entropy' subject. 

2.2 Privacy Implications 

Mining the reality of our one hundred users raises justifiable concerns over privacy.   
However, the work in this paper is a social science experiment, conducted with hu-
man subject approval and consent of the users. Outside the lab we envision a future 
where phones will have greater computation power and will be able to make relevant 
inferences using only data available to the user’s phone. In this future scenario, the 
inferences are done in real-time on the local device, making it unnecessary for private 
information to be taken off the handset.  However, the computational models we are 
currently using cannot be implemented on today's phones. Thus, our results aim to 
show the potential of the information that can be gleaned from the phone, rather than  
to present a system that can be deployed today outside the realm of research.  

3   Eigenbehavior Analysis 

Human life is inherently imbued with routine across all temporal scales, from minute-
to-minute actions to monthly or yearly patterns. Many of these patterns in behavior 
are easy to recognize, however some are more subtle. Although many of life's patterns 
can be modeled as a Markov process, where the future state depends only on the cur-
rent state and observational data, these types of models have difficulty capturing cor-
relations that span beyond several time slices. For example, as shown in the second 
eigenbehavior of Figure 4, sleeping late in the morning for many users appears to be 
correlated with going out that evening. To capture these characteristic behaviors, we 



compute the principle components of behavioral data over a set of days and people. 
We find that these principle components are a set of vectors that span a 'behavior 
space' and have commonalities with other similar subjects. These vectors are essen-
tially the eigenvectors of the covariance matrix of behavior data and represent a set of 
features that characterize the variation between people. Each person's behavior data 
(such as the type shown in Figure 1) contributes in some way to these eigenvectors; 
and when they are plotted, it is clear that the largest ones are correlated with a type of 
behavior, such as sleeping in late and going out on the town. It is for this reason we 
have termed them eigenbehaviors.  

A linear combination of the eigenbehaviors of a group of people can accurately re-
construct the behavior of each individual in the group. However, the behavior of most 
people (especially if they work in a collocated group), can be approximated by using 
only the 'top' eigenbehaviors – the ones that have the largest eigenvalues and account 
for largest amount of variance in the set of people's behaviors. How well these top 
eigenbehaviors can approximate an individual's behavior depends on how similar the 
individual's behavior is to the collective.  

3.1  Computing Eigenbehaviors  

We initially characterize person I by location data shown in Figure 3 as B(x,y), a two-
dimensional D by 24 array of location information, where D is the total number of 
days in person I has been in the study. B contains n labels corresponding to behavior, 
where in our case these labels are {Home, Elsewhere, Work, No Signal, Off}. To per-
form the analysis, we transform B into B', a D by 24*n array of binary values, shown 
in Figure 3. 
 

   
Fig 3. Transformation from B to B' for data from Subject 4  

For these experiments we use D=100 days and n=5, so that the dimensionality of 
vector B' is 500. This vector represents an individual’s behavior over a single day and 
can be represented by a point in a 500-dimensional space. A set of D days can then be 
described as a collection of points in this large space. 



Due to the significant amount of similar structure in most people's lives, days are 
not distributed randomly though this large space. Rather, they are clustered, allowing 
the group to be described by a relatively low dimensional 'behavior space'. This space 
is defined by a set of vectors of dimension 24*n than can best characterize the distri-
bution of people's behaviors within the behavior space and are referred to as eigenbe-
haviors. The top three eigenbehaviors that characterize the individual shown in Figure 
3, are plotted in Figure 4. The first eigenbehavior corresponds to either a normal day 
or a day spent traveling (depending on whether the associated eigenvalue is positive 
or negative). The second eigenbehavior has an eigenvalue that is typically positive on 
weekends and negative on weekdays, corresponding to the characteristic behavior 
that sleeping in is correlated with spending that night out somewhere besides home or 
work. The third eigenbehavior is emphasized when the user is in locations with poor 
phone reception. 

 

 
Fig 4. The top three eigenbehaviors for an individual, Subject 4.  

 
Over the course of the Reality Mining study, we have generated a large set of behav-
iors, 1Γ , 2Γ , 3Γ ... MΓ , for a group of M  people, where M is approximately 100 and 
individual i's behavior vector, iΓ , is D by n by 24. Following the same notation as 

Turk and Pentland [17], the average behavior of the group is 
1

1 M
nnM =

Ψ = Γ∑ . And 

i iΦ = Γ −Ψ  is the deviation of an individual i's behavior from the mean. Figure 8 
shows the different averages for Bluetooth device encounters. Principle components 
analysis is subsequently performed on these vectors generating a set M orthonormal 
vectors, nu , which best describes the distribution of the set of behavior data when 



linearly combined with their respective scalar values, nλ .  These vectors and their 
corresponding scalars are the eigenvectors and eigenvalues of the covariance matrix 
of Φ , the set's deviation from the mean. 
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where the matrix [ ]1 2 3, , ,... MA = Φ Φ Φ Φ  .  Each eigenbehavior can be ranked by the 
total amount of variance in the data for which it accounts, which is essentially the 
associated eigenvalue. Figure 5 and 6 shows how an individual's behavior can be 
reconstructed from the top eigenbehaviors. As shown on Figure 7, for 'low entropy' 
individuals, over 75% of the data can be accounted by simply the first eigenbehavior. 
Additionally, if the classes of "No Signal" and "Off" are ignored, over 85% of the 
variance in the behavior of low entropy subjects can be accounted for. 
 

 
Fig 5. Approximation of a set of locations from Subject 9, a 'low entropy' subject. (120 total 
eigenbehaviors) 



 
Fig 6. Approximation of a set of Bluetooth devices from Subject 23, a 'high entropy' subject. 
(24 total eigenbehaviors) 

 
Fig 7. Approximation error for a 'low entropy' subject vs. a 'high entropy' subject 



4   Eigenbehaviors of Complex Social Systems 

In the previous section we have demonstrated that we can use data from Bluetooth-
enabled mobile phones to discover a great deal about a user’s patterns of activities by 
reducing these complex behaviors to a set of principle components characteristic of 
the individual.  In this section we will extend this base of user modeling to modeling 
complex social systems. By continually logging and time-stamping information about 
activity, location, and proximity for 100 individuals at an academic institution, the 
large-scale dynamics of collective human behavior can be analyzed. The eigende-
composition process we have implemented supports a variety of data including a 
user's trained transition probability matrix from our conditioned Hidden Markov 
Model, proximity patterns, daily communication activity, motion energy and biomet-
ric signals (three of the subjects have been wearing BodyMedia units, collecting gal-
vanic skin response (GSR), acceleration, and heat-flux). For representation purposes, 
we will show data related to solely Bluetooth proximity events for 3 groups of indi-
viduals: incoming business school students, incoming lab students, and senior lab 
students. Figure 8 shows the mean behaviors for each group, jΨ , while Figure 9 

depicts the top three eigenbehaviors 1 2 3[ , , ]j j ju u u of each group. 

 
 

Fig 8. The mean behaviors, jΨ , for each group. These values correspond to the number of 
total encounters with Bluetooth devices over the course of an hour from 12 scans (1 scan/5 
minutes). 

  



 

Fig 9. The top three eigenbehaviors 1 2 3[ , , ]j j ju u u  for each group, j, comprised of the incoming 
business school students, incoming lab students and senior lab students 

 
As expected, the top eigenvector in each of the groups corresponds to the mean. For 
business school students, there is particular emphasis during the school's coffee 
breaks at 10:30.  Besides this emphasis, the other pattern is simply reflective of the 
standard course times (9 until noon, a lunch break and the subsequently afternoon 
courses). The lab students have less of an enforced structure on their day. While the 
entire group of incoming lab students is taking courses, along with approximately half 
of the senior students, these courses can be selected by the students from anywhere in 
the institution and typically are not attended by many other subjects. However, each 
of the lab students has an office within the lab and typically works from there when 
not in class. While the two groups of lab student share virtually identical principle 
eigenbehavior, the secondary eigenbehaviors are more telling about the differences. It 
is common knowledge around the lab that incoming students tend to get overwhelmed 
by over-commitments to coursework and research leading to late nights at the work-
place. This characteristic is emphasized from the group's second and third eigenbe-
haviors with an emphasis from 20:00 to 2:00.  

4.1 Comparing Members of a Group 

When the eigenbehaviors are created from the aggregate behavior of a group of indi-
viduals, it becomes possible to determine how similar group members are to the mean 
behavior by just seeing how closely their behavior can be approximated by the groups 



top M' eigenvectors. Because the Reality Mining dataset contains data for both in-
coming and senior students, it is possible to verify the onset of concordance between 
the incoming lab students and the rest of the laboratory. Likewise it is possible to 
distinguish between different groups of behavior, such as business school students 
and engineering students. An individual's behavior (Γ ) can be projected onto the j 
group's "behavior space" through the following transformation into the group's eigen-
behavior components ( 1 '[ ,..., ]j j

Mu u ) shown in Figure 9. 

( )j j
k k juω = Γ −Ψ  

for k =1,..., M' and jΨ corresponds to the mean behavior of the group. jΨ for Blue-
tooth encounters of senior lab students, incoming lab students, and business school 
students is shown in Figure 8.   
 
These weights form a vector 1 2 3 ', , ,...T j j j j

j Mω ω ω ω Ω =    which is the optimal weight-
ing scheme to get the new behavior as close as possible to the "behavior space". Each 
element in the vector gives a scalar value corresponding to the amount of emphasis to 
place on its respective eigenbehavior when reconstructing the original behavior Γ . 
By treating the eigenbehaviors as a set of basis behaviors, the vector  TΩ , can be 
used to determine which person k  the individual is most similar to in a particular 
group,  j. We follow the method of Turk and Pentland [17] by using Euclideian dis-
tance as our metric for describing similarity. 

22
k

j j
j kε = Ω −Ω  

where j
kΩ  are the reconstruction weights for the kth person in group j. Figure 10 

shows values for jε , the distance between one business school student and his peers. 
Preliminary results show that this distance is correlated with survey responses about 
the relationship between the users, although further analysis is necessary to ensure 
statistical significance. 2 

Fig 10. Values corresponding to jε , the Euclidian distance between Subject 42 and other in-
coming business school students.  

                                                           
2 This method can also be applied to data from a single individual to determine which days are 

most like the ongoing one. We are starting to use this Euclidian distance metric ε  to help 
predict the subsequent actions of the user. 

 



4.2 Identifying Group Affiliation 

Instead of comparing an individual to people within a group, it is also possible to 
determine how much an individual 'fits in' with the group as a whole by determining 
the distance ε as the difference between the projection of the individual onto the 
'behavior space' of a group, j, and the original behavior. We again use Euclidian dis-
tance to calculate the difference between the mean-adjusted behavior, j jΦ = Γ −Ψ  
and its projection onto the group's behavior space '

1
jMj j j

b i ii
uω

=
Φ = ∑ . 

22 j j
j bε = Φ −Φ  

When determining the affiliation of an individual, there can be four possible out-
comes, as shown on Figure 11. The dark gray plane represents the group behavior 
space, containing any set of behaviors that would constitute being part of the group. 
The first option has the input behavior near on the behavior space as well as proxi-
mate to other individuals, 

3j
Ω , within the behavior space. The second example can 

be approximated accurately by the behavior space, but there are no other individuals 
in the same area of the space.  Input three appears to have something in common with 
some members in the group's behavior space, however contains behavioral elements 
that cannot be reconciled within the behavior space. Lastly, four is a disparate input 
neither near the behavior space nor any individual in the space. 
 
 
 

 
Fig 11. A toy example of group behavior space. Individuals 1 and 2 are on the behavior space 
and can be affiliated with the group. Projections of Individuals 3 and 4 onto the behavior space 
do not yield an accurate representation of the two people and therefore are not affiliated with 
the group. 
 
When classifying users into groups based solely on Bluetooth frequency data shown 
in Figure 2, this approach works reasonably well. Using six eigenbehaviors to define 
the business school behavior space, all twenty-five of the business school students are 
quite proximate to the behavior space. However, as shown in Figure 12, projections 
of laboratory students are an average of three times further from the business school 
behavior space. This yields a classification accuracy of 92%. When the behavior 
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space is defined only by the top eigenbehavior, classification accuracy remains a 
respectable 81%.   

 

Fig 12. The distance jε between the three groups of students and the business school behav-
ior space as defined by its top six eigenbehaviors  

5   Eigenbehaviors and Ubiquitous Computing 

While we have shown that eigenbehaviors can be used effectively for extracting the 
underlying structure in the daily patterns of individuals and groups, they also enable a 
variety of potential applications: 

5.1 Usage and Behavior-based Clustering 
Currently handset manufacturers sell the same mobile phone to every demographic, 
from pre-teen to power-executive, to grandmother. If the phones came with a preset 
behavior spaces corresponding to different demographics, with only a limited amount 
of usage data, the phone would have the ability to approximate the distance from the 
user to a given behavior space. By classifying the user into a particular space such as 
"texting teenager", the phone can harness a much greater set of knowledge than what 
could have been gleaned from only a few days of standalone behavioral analysis, no 
matter how sophisticated. With this type of information about the user, the phone 
should be able to adjust its interface and functionality accordingly [20]. Likewise, 
these types of clustering can be used in a matchmaking algorithm that incorporates 



both explicit profile information about a user, as well as implicit behavioral data to 
identify proximate individuals the user doesn't know, but probably should [7]. 

5.2 Eigenbehaviors as Biometrics 
Just as the eigenvalues associated with a set of eigenfaces are somewhat unique signa-
tures of an individual's face, likewise, the eigenbehaviors can be used to recognize a 
specific user by characteristic behaviors. Detecting incidents that are far from the 
user's behavior space could be useful in warning system for the elderly who have 
boarded the wrong bus, or an automotive alarm that detect can when the owner isn't 
behind the wheel. 

5.3 Data Interpolation 
A significant problem that occurs when building models from many human subjects 
is missing data. On average we have logs accounting for approximately 85.3% of the 
time since the phones have been deployed. Approximately 5% of this is due to data 
corruption, while the majority of the missing 14.7% is due to the phones being turned 
off. However, with a set of these characteristic eigenbehaviors defined for each user, 
it now becomes possible to generate a rich synthetic dataset from the approximations 
of the user's eigenvalues over a particular time window of interest. We have shown in 
initial experiments over 80% accuracy when attempting to generate 5-hour chunks of 
location data for low entropy individuals. Similarly, this type of interpolation works 
equally well for behavior prediction.  

6   Conclusion 

It is inevitable that mobile devices of tomorrow will become both more powerful and 
more curious about their user and his or her context. We have distributed a fleet of 
one hundred curious mobile phones throughout an academic campus. We currently 
have hundreds of thousands of hours of continuous human activity data which re-
quires fundamentally new techniques for analysis. To analyze data of such magnitude 
and depth, eigendecompositions are useful because they provide a low-dimensional 
characterization of complex phenomina. This is because the first few eigenvectors of 
the decomposition typically account for a very large percentage of the overall vari-
ance in the signal. As a consequence it becomes easier to characterize complex sys-
tems such as groups of people (since there are fewer parameters to learn), easier to 
analyze the individual and group behavior (since their projection onto the behavior 
space is low dimensional), and thus easier to predict the behavior of both the system 
as a whole and the behavior of the individual elements of the system.    
 These unique properties make eigenbehaviors ideal as a representation of peoples’ 
daily movements, interactions, and their communication behaviors.  The low dimen-
sional representation provided by the eigendecomposition will allow us to quickly 
characterize people, match them to similar people, and predict their behavior in the 
near future.   These capabilities will in turn allow us to build interfaces that can accu-
rately guess the users’ preferences, social connections, and their daily plans. 
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