

Python for Series 60 Platform
API Reference

F O R U M N O K I A

Version 1.2; September 28, 2005

Python for
Series 60 Platform

Forum.Nokia.com

Copyright © 2005 Nokia Corporation. All rights reserved.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation. Other product and company
names mentioned herein may be trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided "as is," with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. Furthermore, information provided in this document is preliminary, and may be changed
substantially prior to final release. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information presented in this document. Nokia Corporation does not warrant or represent
that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without notice.

License

A license is hereby granted to download and print a copy of this specification for personal use only. No other
license to any other intellectual property rights is granted herein.

 Python for Series 60 Platform API Reference 2

Forum.Nokia.com

Contents

1 Introduction.. 7
1.1 Scope ..7
1.2 Audience..7
1.3 New in Release 1.2...8
1.4 Typographical Conventions...8
1.5 Naming Conventions...8

2 API Summary... 9
2.1 Python Standard Library ..9
2.2 Python for Series 60 Extensions ..9

2.2.1 Built-in extensions...9
2.2.2 Dynamically loadable extensions ...9

2.3 Third-Party Extensions..9
3 Python for Series 60 UI Programming Model...10

3.1 Overview ..10
3.2 Basics of appuifw Module...11
3.3 appuifw UI Controls ..11
3.4 Softkeys ..12

4 Selected Issues on Python Programming for Series 60...13
4.1 Concurrency Aspects...13
4.2 Current Series 60 Python Script Execution Environment ...13
4.3 Standard I/O Streams...14
4.4 Usage of Unicode...14
4.5 Date and Time ..14
4.6 Sharing Native Resources between Threads..14
4.7 Scalable User Interface ..14
4.8 Error Handling ..15
4.9 Limitations and Areas of Development ...15

5 appuifw Module ...16
5.1 Module Level Functions ...16
5.2 Application Type..18
5.3 Form Type ..19
5.4 Text Type..20
5.5 Listbox Type ..23
5.6 Icon Type..24
5.7 Content_handler Type..25
5.8 Canvas Type...25

 Python for Series 60 Platform API Reference 3

Forum.Nokia.com

6 graphics Module...28
6.1 Module Level Functions ...28
6.2 Image Class Static Methods..28
6.3 Image Objects...29
6.4 Common Features of Drawable Objects...30

6.4.1 Options ...30
6.4.2 Coordinate representation ..31
6.4.3 Color representation..31
6.4.4 Font specifications..32
6.4.5 Common Methods of Drawable Objects ..32

7 e32 Module..34
7.1 Module Level Functions ...34
7.2 Ao_lock Type..35

8 e32db Module...36
8.1 Module Level Functions ...36
8.2 Dbms Type ...36
8.3 DB_view Type..37
8.4 Mapping Between SQL and Python Data Types...38
8.5 Date and Time Handling ...38

9 e32dbm Module ...40
9.1 Module Level Functions ...40
9.2 e32dbm Objects ...40

10 messaging Module ..42
11 location Module ...43
12 sysinfo Module..44
13 camera Module...46
14 audio Module ..48

14.1 Sound Class Static Methods..48
14.2 Sound Objects...48

15 telephone Module..50
16 calendar Module...51

16.1 Module Level Functions ...52
16.2 CalendarDb Objects...52
16.3 Entry Objects ...53

16.3.1 AppointmentEntry Objects...55
16.3.2 EventEntry..55
16.3.3 AnniversaryEntry ...55
16.3.4 TodoEntry ..55

 Python for Series 60 Platform API Reference 4

Forum.Nokia.com

16.3.5 TodoListDict ..55
16.3.6 TodoList..56

16.4 Repeat Rules ...56
17 contacts Module ...58

17.1 Module Level Functions ...58
17.2 ContactDb Object ...58
17.3 Contact Object...59
17.4 ContactField Object ...61

18 Extensions to Standard Library Modules ...62
18.1 thread Module ..62
18.2 socket Module...62

19 Terms and Abbreviations ..64
20 References ...66
Appendix A Python Library Module Support..67
Appendix B Extensions to C API ...70

B.1 class CSPyInterpreter..70
B.2 Extensions to C API..70

Appendix C Extending Series 60 Python...72
C.1 Overview ..72
C.2 Services for Extensions ..73
C.3 Example ..73

 Python for Series 60 Platform API Reference 5

Forum.Nokia.com

Change History

December 10, 2004 Version 1.0 Initial document release.

June 29, 2005 Version 1.1.5 Sections 1.3, 3.3, 4.5, 4.6, 4.7, 5.6, 5.8, 6, 12, 13, 14, 15, 16, and 17
added. Sections 1, 3.1, 3.2, 5.1, 5.2, 5.4, 5.5, 7.1, and 18.2
updated.

September 28, 2005 Version 1.2 Section 4.7 added. Sections 1.3, 5.1, 5.2, 5.4, 5.5, 5.6, 13, and 19
updated.

 Python for Series 60 Platform API Reference 6

Forum.Nokia.com

1 Introduction

The Python for Series 60 Platform (Python for Series 60) simplifies application development and
provides a scripting solution for the Symbian C++ APIs. This document is for Python for Series 60
release 1.2 that is based on Python 2.2.2.

The documentation for Python for Series 60 includes three documents:

• Getting Started with Python for Series 60 Platform [5] contains information on how to install
Python for Series 60 and how to write your first program.

• This document contains API and other reference material.

• Programming with Python for Series 60 Platform [6] contains code examples and programming
patterns for Series 60 devices that can be used as a basis for programs.

Python for Series 60 as installed on a Series 60 device consists of:

• Python execution environment, which is visible in the application menu of the device and has
been written in Python on top of Python for Series 60 Platform (see Series 60 SDK documentation
[4])

• Python interpreter DLL

• Standard and proprietary Python library modules

• Series 60 UI application framework adaptation component (a DLL) that connects the scripting
domain components to the Series 60 UI

• Python Installer program for installing Python files on the device, which consists of:

o Recognizer plug-in

o Symbian application written in Python

Tip: The Python for Series 60 developer discussion board [9] on the Forum Nokia Web site is a useful
resource for finding out information on specific topics concerning Python for Series 60. You are
welcome to give feedback or ask questions about Python for Series 60 through this discussion board.

1.1 Scope

This document includes the information required by developers to create applications that use Python
for Series 60, and some advice on extending the platform.

1.2 Audience

This guide is intended for developers looking to create programs that use the native features and
resources of the Series 60 phones. The reader should be familiar with the Python programming
language (http://www.python.org) and the basics of using Python for Series 60 (see Getting Started
with Python for Series 60 Platform [5]).

 Python for Series 60 Platform API Reference 7

http://www.python.org/

Forum.Nokia.com

1.3 New in Release 1.2

This section lists the updates in this document since release 1.1.6.

• Section 4.7, Scalable User Interface has been added.

• There are some general updates in 5.1, Module Level Functions and 5.2, Application Type.

• Section 5.4, Text Type has been updated to include a delete method.

• Sections 5.5, Listbox Type and 5.6, Icon Type have been updated with SVG-T support information.

• Chapter 13, camera Module has been updated with new functions.

1.4 Typographical Conventions

The following typographical conventions are used in this document:

Bold Bold is used to indicate windows, views, pages and their
elements, menu items, and button names.

Italic Italics are used when referring to another chapter or section in
the document and when referring to a manual. Italics are also
used for key terms and emphasis.

Courier Courier is used to indicate parameters, file names, processes,
commands, directories, and source code text.

> Arrows are used to separate menu items within a path.

1.5 Naming Conventions

Most names of the type ESomething typically indicate a constant defined by the Symbian SDK. More
information about these constants can be found in the Symbian SDK documentation.

 Python for Series 60 Platform API Reference 8

Forum.Nokia.com

2 API Summary

All built-in object types of the Python language are supported in the Series 60 environment. The rest
of the programming interfaces are implemented by various library modules as summarized in this
chapter.

2.1 Python Standard Library

Python for Series 60 platform distribution does not include all of the Python’s standard and optional
library modules to save storage space in the phone. Nevertheless, many of the excluded modules also
work in the Series 60 Python environment without any modifications. Some modules are included in
the SDK version but not installed in the phone. For a summary of supported library modules, see
Appendix A, Python Library Module Support.

When Python, available at http://www.python.org, is installed on a PC, the library modules are by
default located in \Python22\Lib on Windows and in /usr/lib/python2.2 on Linux. The
Python library modules’ APIs are documented in G. van Rossum, and F.L. Drake, Jr., editor. [Python]
Library Reference. [1]

Python for Series 60 extends some standard modules. These extensions are described in this
document, see Chapter 18, Extensions to Standard Library Modules.

2.2 Python for Series 60 Extensions

There are two kinds of native C++ extensions in the Python for Series 60 Platform: built-in extensions
and dynamically loadable extensions.

2.2.1 Built-in extensions

There are two built-in extensions in the Python for Series 60 package:

• The e32 extension module is built into the Python interpreter on Symbian OS, and implements
interfaces to special Symbian OS Platform services that are not accessible via Python standard
library modules.

• The appuifw module for Python for Series 60 Platform offers UI application framework related
Python interfaces.

2.2.2 Dynamically loadable extensions

These dynamically loadable extension modules provide proprietary APIs to Series 60 Platform’s
services: graphics (see Chapter 6, graphics Module), e32db (see Chapter 8, e32db Module),
messaging (see Chapter 10, messaging Module), location (see Chapter 11, location Module),
sysinfo (see Chapter 12, sysinfo Module), camera (see Chapter 13, camera Module), audio (see
Chapter 14, audio Module), telephone (see Chapter 15, telephone Module), calendar (see Chapter
16, calendar Module), and contacts (see Chapter 17, contacts Module).

2.3 Third-Party Extensions

It is also possible to write your own Python extensions. Series 60 related extensions to Python/C API
are described in Appendix B, Extensions to C API. For some further guidelines on writing extensions in
C/C++, see Appendix C, Extending Series 60 Python. In addition, for an example on porting a simple
extension to Series 60, see Programming with Python for Series 60 Platform [6].

 Python for Series 60 Platform API Reference 9

http://www.python.org/

Forum.Nokia.com

3 Python for Series 60 UI Programming Model

This chapter gives an outline of the conceptual model of UI application programming that underlies
the APIs described in the following chapters.

3.1 Overview

Figure 1 shows the Python for Series 60 environment for UI application programming. The built-in
appuifw Python module provides an interface to the Series 60 framework.

Python for S60
UI application

appuifw

Content_handler Canvas

Series 60 UI
elements

Series 60
Common UI Series 60 UI

application

<<resource>>

Symbian GDI

Python APIPython API

Image

graphics

Figure 1: UI application programming

The appuifw.Content_handler object type facilitates interfacing to other UI applications and
common high-level UI components. It is based on the notion that designated handlers can reduce UI
application interaction to operations on MIME-type content.

 Python for Series 60 Platform API Reference 10

Forum.Nokia.com

3.2 Basics of appuifw Module

Figure 2 shows the layout of a Series 60 application UI in the normal screen mode and a summary of
how it relates to the services available at the appuifw API. For alternative layouts, see Figure 4.

Left softkey
”appuifw.app.menu”

Right softkey
”appuifw.app.exit_key_handler”

Main application window
”appuifw.app.body”

Title
”appuifw.app.title”

Navigation pane
”appuifw.app.enable_tabs(), activate_tab()”

Dialog

”appuifw.<dialog_function>”

Figure 2: UI layout when appuifw.app.screen is set to 'normal'

The main application window may be set up to be occupied by a UI control.

A multi-view application can show the different views as tabs in the navigation pane and react as the
users navigate between tabs.

Dialogs always take precedence over the usual UI controls and appear on top of them.

3.3 appuifw UI Controls

The UI controls are implemented as Python types. These types are available:

• Text

• Listbox

• Canvas

UI controls appear on the screen as soon as an instance of the corresponding Python type is created
and set to the body field (app.body) of the current application UI.

Form is a versatile dialog implemented as a type.

The following dialogs are implemented as functions:

• note

• query

• multi_query

• selection_list

 Python for Series 60 Platform API Reference 11

Forum.Nokia.com

• multi_selection_list

• popup_menu

A dialog becomes visible as soon as the corresponding Python function has been called. The function
returns with the eventual user input or information on the cancellation of the dialog. Form is an
exception; it is shown when its execute method is called.

3.4 Softkeys

The softkeys are managed by the underlying Series 60 Platform. When no dialog is visible, the right
softkey is bound to application exit and the left one represents an Options menu. Python for Series 60
offers an interface for manipulating the menu (see Section 5.2, Application Type, menu) and for
binding the Exit key to a Python-callable object.

The native code that implements a dialog also manages the softkeys of the dialog, typically OK and
Cancel. When the user input needs to be validated before accepting it and dismissing the dialog, it is
best to use Form.

 Python for Series 60 Platform API Reference 12

Forum.Nokia.com

4 Selected Issues on Python Programming for Series 60

The following issues must be considered when using Python on Series 60.

4.1 Concurrency Aspects

The thread that initializes the Python interpreter becomes the main Python thread. This is usually the
main thread of a UI application. When an application written in Python launches, the Symbian
platform infrastructure creates the main UI thread that starts the Python environment. If a Python
program is started as a server with e32.start_server, then the Python main thread is not a UI
thread.

It is possible to launch new threads via the services of thread module. Examples of such situations
could be to overcome eventual problems with the fixed, relatively small stack size of the main UI
application thread; or to perform some background processing while still keeping the UI responsive.
These new threads are not allowed to directly manipulate the UI; in other words, they may not use the
appuifw module.

Because of the limitations of the Python interpreter’s final cleanup, Python applications on the
Symbian OS should be designed in such a way that the main thread is the last thread alive.

A facility called active object is used extensively on the Symbian OS to implement co-operative, non-
preemptive scheduling within operating system threads. This facility is also utilized with native APIs. A
Python programmer is exposed to related concurrency issues particularly in UI programming.
Preserving the responsiveness of the UI with the help of active objects needs to be considered when
designing the application logic. At the same time it is necessary to take into account the resulting
concurrent behavior within the application when active objects are used. While the main execution
path of a UI script is blocked in wait for an active object to complete – either explicitly as a result of
using e32.Ao_lock, or indirectly within some other Python API implementation – the UI-related
callbacks may still get called.

The standard thread.lock cannot normally be used for synchronization in the UI application main
thread, as it blocks the UI event handling that takes place in the same thread context. The Symbian
active object based synchronization service called e32.Ao_lock has been implemented to overcome
this problem. The main thread can wait in this lock, while the UI remains responsive.

Python for Series 60 tries to minimize the unwanted exposure of a Python programmer to the active
objects of the Symbian OS. The programmer may choose to implement the eventual concurrent
behavior of the application with normal threads. However, certain active object based facilities are
offered as an option in the e32 module.

4.2 Current Series 60 Python Script Execution Environment

The current options for installing Python scripts to a Series 60 device are: a stand-alone installation to
the device’s main application menu, and an installation to a folder hierarchy maintained by the
Python execution environment. For more details on this topic, see Programming with Python for Series
60 Platform [6]. In the first case the script application is launched via application menu, and it executes
in its own process context. The latter case is suitable for development, testing, and trying out new
scripts.

The Python execution environment delivered with Python for Series 60 package has itself been
written in Python. It is a collection of scripts that offer an interactive Python console and a possibility
to execute scripts located in the directory of the execution environment. Due to this kind of design the
scripts are not fully isolated from each other. This means that any changes a script makes in the

 Python for Series 60 Platform API Reference 13

Forum.Nokia.com

shared execution environment are visible to other scripts as well. This may be helpful during the
development of a script suite, as long as care is taken to avoid unwanted interference between scripts.

For some special issues to consider when writing Python scripts to be run from the current Python
execution environment, see Programming with Python for Series 60 Platform [6]. These include the
arrangements for standard output and the maintenance of the Options menu contents.

4.3 Standard I/O Streams

The standard Python I/O streams in the sys module are by default connected to underlying C STDLIB’s
stdio streams that in turn are terminated by dummy file descriptors. Usually Python scripts set the
I/O streams suitably by manipulating them at Python level via sys module interface. The e32
extension module offers a Python interface for attaching to C STDLIB’s output streams, but this service
is only recommended for debugging purposes. The e32._stdo function takes as its argument the
name of the file where C STDLIB's stdout and stderr are to be redirected. This makes it possible to
capture the low-level error output when the Python interpreter has detected a fatal error and aborts.

4.4 Usage of Unicode

No changes have been made to the standard library modules with regard to string argument and
return value types. Series 60 extensions generally accept both plain strings and Unicode strings as
arguments, but they return only Unicode strings. APIs that take string arguments for the purpose of
showing them on the UI expect Unicode strings. Giving something else may result in garbled
appearance of the text on the screen.

4.5 Date and Time

Unix time, seconds since January 1, 1970, 00:00:00 UTC (Coordinated Universal Time), is generally used
as the time format in the Python for Series 60 APIs described in this document. The float type is used
for storing time values.

4.6 Sharing Native Resources between Threads

Warning: Python for Series 60 objects that wrap native resources cannot be shared between threads.
Trying this can lead to a crash.

In general, Python for Series 60 objects that wrap native resources cannot be shared between threads.
Trying this can lead to a crash. This is because native resources cannot be shared between native
threads. Two examples of this follow:

• Symbian OS STDLIB implementation has some limitations that are reflected at OS module
support (see Series 60 SDK documentation [4]). For example, STDLIB file descriptors cannot be
shared between threads, and for that reason, Python file objects cannot either.

• Sockets as implemented in the Series 60 version of the socket module have the same
restriction.

4.7 Scalable User Interface

Note: Series 60 2nd Edition FP3 and further releases.

Series 60 2nd Edition FP3 enables a new feature called scalable user interface. For Python developers
scalable user interface is currently visible in new APIs supporting the scalable UI, icon loading, and

 Python for Series 60 Platform API Reference 14

Forum.Nokia.com

new screen resolutions. For more information on scalable user interface, see Section 5.6, Icon Type of
this document, as well as Programming with Python for Series 60 Platform [6].

4.8 Error Handling

The APIs described in this document may raise any standard Python exceptions. In situations where a
Symbian error code is returned, its symbolic name is given as the value parameter of a
SymbianError exception.

In case where the functions have nothing special to return, they return None on success.

4.9 Limitations and Areas of Development

Some OS level concepts to which the standard os library module offers an interface do not exist as
such in Symbian OS environment. An example of this is the concept of current working directory.

Reference cycle garbage collection is not in use. Because of this, special care needs to be taken to
dismantle cyclic references when a Python program exits. This prevents error messages related to
native resources that are left open. The problem could be removed by developing support for
collection of cyclic garbage or by performing a special cleanup action on interpreter exit. The gc
module has been ported to the Symbian OS, and it has been verified to work. However, the current
distribution has been built without gc support.

 Python for Series 60 Platform API Reference 15

Forum.Nokia.com

5 appuifw Module

The appuifw module offers an interface to Series 60 UI application framework. The services of this
interface may only be used in the context of the main thread, that is, the initial thread of a UI
application script.

5.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the appuifw
module:

available_fonts()
Retrieves a list (Unicode) of all fonts available in the device.
Example:
deviceFonts = appuifw.available_fonts()

input query(label, type [,initial_value])
Performs a query with a single-field dialog. The prompt is set to label, and the type of the
dialog is defined by type. The value of type can be any of the following strings:

o 'text'

o 'code'

o 'number'

o 'date'

o 'time'

o 'query'

The type of the optional initial_value parameter and the returned input depend on the
value of type:

o For text fields, ('text', 'code') it is Unicode

o For number fields, it is numeric

o For date fields, it is seconds since epoch rounded down to the nearest local midnight

A simple confirmation query and time query take no initial value and return True/None and
seconds since local midnight, correspondingly. All queries return None if the users cancel the
dialog.

(input_1, input_2) multi_query(label_1, label_2)
A two-field text (Unicode) input dialog. Returns None if the users cancel the dialog.

note(text [, type])
Displays a note dialog of the chosen type with text (Unicode). The default value for type is
'info', which is automatically used if type is not set. type can be one of the following
strings: 'error', 'info', or 'conf'.

index popup_menu(list [, label])
A pop-up menu style dialog. list representing the menu contents can be a list of Unicode
strings or a list of Unicode string pairs (tuples). The resulting dialog list is then a single-style or
a double-style list. A single-style list is shown in full; whereas a double-style list shows the
items one at a time. Returns None if the users cancel the operation.

 Python for Series 60 Platform API Reference 16

Forum.Nokia.com

index selection_list(choices=list [, search_field=0])
Executes a dialog that allows the users to select a list item and returns the index of the chosen
item, or None if the selection is cancelled by the users.
(choices=list [, search_field=0]) consists of keywords and values, where

o choices is a list of Unicode strings.

o search_field is 0 (disabled) by default and is optional. Setting it to 1 enables a search
field (find pane) that facilitates searching for items in long lists. If enabled, the search field
appears after you press a letter key.

(indexes) multi_selection_list(choices=list [, style='checkbox',
search_field=0])

Executes a dialog that allows the users to select multiple list items. Returns a tuple of indexes (a
pair of Unicode strings) of the chosen items, or None if the selection is cancelled by the users.
(choices=list [, style='checkmark', search_field=0]) consists of keywords
and values, where

o choices is a list of Unicode strings.

o style is an optional string; the default value being 'checkbox'. If 'checkbox' is given,
the list will be a checkbox list, where empty checkboxes indicate what items can be marked.
The other possible value that can be set for style is 'checkmark'. If 'checkmark' is
given, the list will be a markable list, which lists items but does not indicate specifically that
items can be selected. To select items on a markable list, use the Navigation key to browse
the list and the Edit key to select an item. For example views on checkbox and markable lists,
see Figure 3.

o search_field is 0 (disabled) by default and is optional. Setting it to 1 enables a search
field (find pane) that facilitates searching for items in long lists. If enabled, the search field is
always visible with checkbox lists; with markable lists it appears by pressing a letter key.

Example:
tuple = appuifw.multi_selection_list(L, style='checkmark',
search_field=1)

Figure 3: Examples of a checkbox list (left) and a markable list (right)

 Python for Series 60 Platform API Reference 17

Forum.Nokia.com

5.2 Application Type

A single implicit instance of this type always exists when appuifw module is present and can be
referred to with the name app. New instances cannot be created by a Python program.

Instances of Application type have the following attributes:

body
The UI control that is visible in the application’s main window. Currently either Text, a
Listbox object, Canvas, or None.

exit_key_handler
A callable object that is called when the user presses the Exit softkey. Setting
exit_key_handler to None sets it back to the default value.

menu
This can be:

o a list of (title, callback) pairs, where each pair describes an item in the application’s
menu bar, or

o a list of (title, ((title, callback),...)) pairs, where the tuple of Unicode strings
((title, callback),...) creates a submenu.

title (Unicode) is the name of the item and callback the associated callable object. The
maximum allowed number of items in a menu, or items in a submenu, or submenus in a menu
is 30.

Example:
appuifw.app.menu = [(u"item 1", item1),
 (u"Submenu 1", ((u"sub item 1", subitem1),

(u"sub item 2", subitem2)))
]

screen
The screen area used by an application. See Figure 4 for example screens. The appearance of
the application on the screen can be affected by setting one of the following values:
'normal', 'large', and 'full'.
Examples:
appuifw.app.screen='normal' (a normal screen with title pane and softkeys)
appuifw.app.screen='large' (only softkeys visible)
appuifw.app.screen='full' (a full screen)

Figure 4: Examples of normal screen (left), large screen (middle), and full screen (right)

 Python for Series 60 Platform API Reference 18

Forum.Nokia.com

title
The title, in Unicode, that is visible in the application’s title pane.

Instances of Application type have the following methods:

activate_tab(index)
Activates the tab index counting from zero.

name full_name()
Retrieves the full name, in Unicode, of the native application in whose context the current
Python interpreter session runs.

set_exit()
Requests a graceful exit from the application as soon as the current script execution returns.

set_tabs(tab_texts [,callback=None])
Sets tabs with given names on them in the navigation bar; tab_texts is a list of Unicode
strings. When the users navigate between tabs, callback gets called with the index of the
active tab as an argument. Tabs can be disabled by giving an empty or one-item tab_texts
list.

5.3 Form Type

Form implements a dynamically configurable, editable multi-field dialog. Form caters for advanced
dialog use cases with requirements such as free selectability of the combination of fields, possibility of
validating the user input, and automatically producing the contents of some dialog fields before
allowing the closing of the dialog.

Form([fields=field_list, flags=flag])
Creates a Form instance. field_list consists of tuples: (label, type [,value]),
where

o label is a Unicode string

o type is one of the following strings: 'text', 'number', 'date', 'time',or 'combo'

o value, depending on type: Unicode string, numeric, float (seconds since Unix epoch
rounded down to the nearest local midnight), float (seconds since local midnight), or
([unicode_string choices], index)

Form can also be configured and populated after construction. The configuration flags are
visible as an attribute. Form implements the list protocol that can be used for setting the form
fields, as well as obtaining their values after the dialog has been executed.

Instances of Form type have the following attributes:

flags
This attribute holds the values of the various configuration flags. Currently supported flags are:

FFormEditModeOnly
When this flag is set, the form remains in edit mode while execute runs.

FFormViewModeOnly
When this flag is set, the form cannot be edited at all.

FFormAutoLabelEdit
This flag enables support for allowing the end-users to edit the labels of the form fields.

 Python for Series 60 Platform API Reference 19

Forum.Nokia.com

FFormAutoFormEdit
This flag enables automatic support for allowing the end-users to add and delete the form
fields. Note that this is an experimental feature and is not guaranteed to work with all SDK
versions.

FFormDoubleSpaced
When this flag is set, double-spaced layout is applied when the form is executed: one field
takes two lines, as the label and the value field are on different lines.

menu
A list of (title, callback) pairs, where each pair describes an item in the form’s menu
bar that is active while the dialog is being executed. title (Unicode) is the name of the item
and callback the associated callable object.

save_hook
This attribute can be set to a callable object that receives one argument and returns a Boolean
value. It gets called every time the users want to save the contents of an executing Form
dialog. A candidate list for new form content − a list representing the currently visible state of
the UI − is given as an argument. The list can be modified by save_hook. If save_hook
returns True, the candidate list is set as the new contents of the form. Otherwise, the form UI
is reset to reflect the field list contained in Form object.

Instances of Form type have the following methods:

execute()
Executes the dialog by making it visible on the UI.

insert(), pop(), length(), subscription, subscription-assignment
A subset of the list interface to access the form instance as a list. The subscript notation f[i]
can be used to access or modify the i-th element of the form f. Same limitations as discussed
above in the context of the flag FFormAutoFormEdit apply to modifying a form while it is
executing. The ability to change the schema of a form while it is executing is an experimental
feature.

5.4 Text Type

Text is a text editor UI control. For examples on the options available with Text, see Figure 5.

Instances of Text type have the following attributes:

color
The color of the text. color supports the same color representation models as the graphics
module. For the supported color representation models, see Section 6.4.3, Color representation.

focus
A Boolean attribute that indicates the focus state of the control. Editor control also takes the
ownership of the navigation bar, and this feature is needed to enable the usage of this control
in applications that use the navigation bar − for example, navigation tabs.

font
The font of the text. There are two possible ways to set this attribute:

o Using a supported Unicode font, for example u"Latin12". Trying to set a font which is not
supported by the device has no effect. A list of supported fonts can be retrieved by using
appuifw.available_fonts .

Example, setting font:
t = appuifw.Text()

 Python for Series 60 Platform API Reference 20

Forum.Nokia.com

t.font = u"albi17b" (sets font to Albi 17 bold)
t.font = u"LatinPlain12" (sets font to Latin Plain 12)

o Using one of the default device fonts that are associated with the following labels (plain
strings):
'annotation'
'title'
'legend'
'symbol'
'dense'
'normal'

Example, setting font:
t.font = "title" (sets font to the one used in titles)

Example, checking the currently set font:
unicodeFont = t.font

The attribute value retrieved is always a Unicode string. If the font has been set with a label, for
example, 'title', the attribute will retrieve the font associated with that label.

highlight_color
The highlight color of the text. highlight_color supports the same color representation
models as the graphics module. For the supported color representation models, see Section
6.4.3, Color representation.

style
The style of the text. The flags for this attribute are defined in the appuifw module. These
flags can be combined by using the binary operator or. The flags can be divided into two types:
text style and text highlight. Text style flags can be freely combined with each other. However,
one or more text style flags can be combined with only one text highlight flag. The flags are:

text style:
STYLE_BOLD enables bold text.
STYLE_UNDERLINE enables underlined text.
STYLE_ITALIC enables italicized text.
STYLE_STRIKETHROUGH enables marking text with strikethrough formatting.

text highlight:
HIGHLIGHT_STANDARD enables standard highlight.
HIGHLIGHT_ROUNDED enables rounded highlight.
HIGHLIGHT_SHADOW enables shadow highlight.

Note: Only one highlight is allowed to be used at once. Therefore, it is possible to combine only one
highlight with one or more text styles.

Examples:
t = appuifw.Text()

These and other similar values and combinations are valid:
t.style = appuifw.STYLE_BOLD
t.style = appuifw.STYLE_UNDERLINE
t.style = appuifw.STYLE_ITALIC
t.style = appuifw.STYLE_STRIKETHROUGH
t.style =
(appuifw.STYLE_BOLD|appuifw.STYLE_ITALIC|appuifw.STYLE_UNDERLINE)

These values are valid:
t.style = appuifw.HIGHLIGHT_STANDARD
t.style = appuifw.HIGHLIGHT_ROUNDED
t.style = appuifw.HIGHLIGHT_SHADOW

 Python for Series 60 Platform API Reference 21

Forum.Nokia.com

This combination is not valid:

Note: Invalid code, do not try!

t.style = (appuifw.HIGHLIGHT_SHADOW|appuifw.HIGHLIGHT_ROUNDED)

Figure 5: Examples of the options available for Text type

Instances of Text type have the following methods:

add(text)
Inserts the Unicode string text to the current cursor position.

bind(event_code, callback)
Binds the callable Python object callback to event event_code. The key codes are defined
in the key_codes library module. The call bind(event_code, None) clears an existing
binding. In the current implementation the event is always passed also to the underlying native
UI control.

clear()
Clears the editor.

delete([pos=0, len=len()])
Deletes len characters of the text held by the editor control, starting from the position pos.

cursor_pos get_pos()
Returns the current cursor position.

text_length len()
Returns the length of the text string held by the editor control.

text get([pos=0, len=len()])
Retrieves len characters of the text held by the editor control, starting from the position pos.

set(text)
Sets the text content of the editor control to Unicode string text.

set_pos(cursor_pos)
Sets the cursor to cursor_pos.

 Python for Series 60 Platform API Reference 22

Forum.Nokia.com

5.5 Listbox Type

An instance of this UI control type is visible as a listbox, also known as a list in Symbian, that can be
configured to be a single-line item or a double-item listbox. Figure 6 shows a single-line item Listbox
with icons. For more information on the MBM and MIF formats, see Section 5.6, Icon Type.

Figure 6: Listbox with icons

Listbox(list, callback)
Creates a Listbox instance. A callable object callback gets called when a listbox selection
has been made. list defines the content of the listbox and can be one of the following:

o A normal (single-line item) listbox: a list of Unicode strings, for example [unicode_string
item1, unicode_string item2]

o A double-item listbox: a two-element tuple of Unicode strings , for example
[(unicode_string item1, unicode_string item1description),
(unicode_string item2, unicode_string item2description)]

o A normal (single-line item) listbox with graphics: a two-element tuple consisting of a Unicode
string and an Icon object, for example [(unicode_string item1, icon1),
(unicode_string item2, icon2)].

o A double-item listbox with graphics: a three-element tuple consisting of two Unicode strings
and one Icon object, for example [(unicode_string item1, unicode_string
item1description, icon1), (unicode_string item2, unicode_string
item2description, icon2)]

Example:
To produce a normal (single-line item) lisbox with graphics:
icon1 = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)
icon2 = appuifw.Icon(u"z:\\system\\data\\avkon.mbm ", 40, 41)

entries = [(u"Signal", icon1),

(u"Battery", icon2)]

lb = appuifw.Listbox(entries, lbox_observe)

 Python for Series 60 Platform API Reference 23

Forum.Nokia.com

Instances of Listbox type have the following methods:

bind(event_code, callback)
Binds the callable Python object callback to event event_code. The key codes are defined
in the key_codes library module. The call bind(event_code, None) clears an existing
binding. In the current implementation the event is always passed also to the underlying native
UI control.

index current()
Returns the currently selected item’s index in the Listbox.

set_list(list [,current])
Sets the Listbox content to a list of Unicode strings or a list of tuples of Unicode strings. list
can be one of the following:

o A normal (single-style) list: a list of Unicode strings, for example [unicode_string
item1, unicode_string item2]

o A double-style list box: a two-element tuple of Unicode strings , for example
[(unicode_string item1, unicode_string item1description),
(unicode_string item2, unicode_string item2description)]

o A normal (single-style) list with graphics: a two-element tuple consisting of a Unicode string
and an Icon object, for example [(unicode_string item1, icon1),
(unicode_string item2, icon2)].

o A double-style list box with graphics: a three-element tuple consisting of two Unicode strings
and one Icon object, for example [(unicode_string item1, unicode_string
item1description, icon1), (unicode_string item2, unicode_string
item2description, icon2)]

Optionally, the initially focused list item can be set.

5.6 Icon Type
An instance of Icon type encapsulates an icon to be used together with a Listbox instance.
Note that currently Icon can only be used with Listbox (see Section 5.5, Listbox Type).

MBM is the native Symbian OS format used for pictures. It is a compressed file format where the
files can contain several bitmaps and can be referred to by a number. An .mbg file is the header
file usually associated with an .mbm file, which includes symbolic definitions for each bitmap in
the file. For example, an avkon.mbm file has an associated index file called avkon.mbg, which
is included in Series 60 SDKs. For more information on the MBM format and the bitmap
converter tool, see Series 60 SDK documentation [4] and search the topics with the key term
"How to provide Icons"; this topic also points you to the Bitmap Converter tool that can be used
for converting bitmaps into the MBM format.

Note: Series 60 2nd Edition FP3 introduces a new format for icons called Multi-Image File (MIF). This
format is very similar to the MBM format and also contains several compressed files. The files to be
compressed should be in Scalable Vector Graphics Tiny (SVG-T) format. For more information on the
SVG format, see Scalable Vector Graphics (SVG) 1.1 Specification [10].

Icon(filename, bitmap, bitmapMask)
Creates an icon. filename is a Unicode file name and must include the whole path. Note that
MBM and MIF (MIF only in Series 60 2nd Edition FP3) are the only file formats supported.
bitmap and bitmapMask are integers that represent the index of the icon and icon mask
inside that file respectively.

 Python for Series 60 Platform API Reference 24

Forum.Nokia.com

Example:
The following builds an icon with the standard signal symbol:
icon = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)

5.7 Content_handler Type

An instance of Content_handler handles data content by its MIME type.

Content_handler([callback])
Creates a Content_handler instance. Content_handler handles data content by its MIME
type. The optional callback is called when the embedded handler application started with
the open method finishes.

Instances of Content_handler type have the following methods:

open(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is embedded in the caller’s thread. The call to this
function returns immediately. When the handler application finishes, the callback that was
given to the Content_handler constructor is called.

open_standalone(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is started in its own process. The call to this
function returns immediately. Note that callback is not called for applications started with
this method.

5.8 Canvas Type

Canvas is a UI control that provides a drawable area on the screen and support for handling raw key
events. Canvas supports the standard drawing methods that are documented in Chapter 6, graphics
Module.

Canvas([redraw_callback=None, event_callback=None])
Constructs a Canvas. The optional parameters are callbacks that are called when specific
events occur. redraw_callback is called whenever a part of the Canvas has been obscured
by something, is then revealed, and needs to be redrawn. This can typically happen, for
example, when the user switches away from the Python application and back again, or after
displaying a pop-up menu. The callback takes as its argument a four-element tuple that
contains the top-left and the bottom-right corner of the area that needs to be redrawn. In
many cases redrawing the whole Canvas is a reasonable option.

Note: Be careful of cyclic references here. For example, if the callbacks are methods of an object that
holds a reference to the Canvas, a reference cycle is formed that must be broken at cleanup time or
the Canvas will not be freed.

If this parameter is given and not set to None, event_callback is called whenever a raw key
event is received. There are three kinds of key events: EEventKeyDown, EEventKey, and
EEventKeyUp. When a user presses a key down, events EEventKeyDown and EEventKey
are generated. When the key is released, an EEventKeyUp event is generated.

The argument to the event_callback is a dictionary that contains the following data for key
events:

o 'type': one of EEventKeyDown, EEventKey, or EEventKeyUp

o 'keycode': the keycode of the key

 Python for Series 60 Platform API Reference 25

Forum.Nokia.com

o 'scancode': the scancode of the key

o 'modifiers': the modifiers that apply to this key event

Each key on the keyboard has one or more scancodes and zero or more keycodes associated
with it. A scancode represents the physical key itself and a keycode is the result of state-related
operating system defined processing done on the key. For keys that correspond to a symbol in
the current character set of the phone, the keycode is equal to the code of the corresponding
symbol in that character set. For example, if you are using the Nokia Wireless Keyboard (SU-
8W), pressing the key A will always produce the scancode 65 (ASCII code for an upper case A),
but the keycode could be either 65 or 91 (ASCII code for a lower case A) depending on whether
or not the Shift key is pressed or Caps Lock is active.

The key_codes module contains definitions for the keycodes and scancodes. See Figure 7 for
the codes of the most common keys on the phone keypad.

Some keys are handled in a special way:

o A short press of the Edit key causes it to stay down, meaning that no EEventKeyUp event is
sent. The event is only sent after a long press.

o Detecting presses of the Voice tags key or the Power key is not supported.

o If the right softkey is pressed, the appuifw.app.exit_key_handler callback is always
executed.

There is no way to prevent the standard action of the Hang-up key, the Menu key, the Power
key or the Voice tags key from taking place.

 Python for Series 60 Platform API Reference 26

Forum.Nokia.com

1. EKeyLeftSoftkey
EScancodeLeftSoftkey

2. EKeyYes
EScancodeYes

3. EKeyMenu
EScancodeMenu

4. EKey1...9,0
EScancode1...9,0

5. EKeyStar
EScancodeStar

6. EKeyLeftArrow
EScancodeLeftArrow

7. EKeyUpArrow
EScancodeUpArrow

8. EKeySelect
EScancodeSelect

9. EKeyRightArrow
EScancodeRightArrow

10. EKeyDownArrow
EScancodeDownArrow

11. EKeyRightSoftkey
EScancodeRightSoftkey

12. EKeyNo
EScancodeNo

13. EKeyBackspace
EScancodeBackspace

14. EKeyEdit
EScancodeEdit

15. EKeyHash
EScancodeHash

Figure 7: Keycodes and scancodes for phone keys usable from Python applications

Instances of Canvas type have the following attribute:

size
A two-element tuple that contains the current width and height of the Canvas as integers.

Instances of Canvas type have the same standard drawing methods that are documented in Chapter
6, graphics Module.

 Python for Series 60 Platform API Reference 27

Forum.Nokia.com

6 graphics Module

The graphics module provides access to the graphics primitives and image loading, saving, resizing,
and transformation capabilities provided by the Symbian OS.

The module is usable from both graphical Python applications and background Python processes.
However, background processes have some restrictions. This means that plain string symbolic font
names are not supported in background processes since background processes have no access to the
UI framework (see also Section 6.4.4, Font specifications).

For an example on using this module, see Programming with Python for Series 60 Platform [6].

Note: Functions Image.open and Image.inspect and Image object methods load, save,
resize, and transpose are not available for Series 60 1st Edition.

6.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the
graphics module:

Image screenshot()
Takes a screen shot and returns the image in Image format.

6.2 Image Class Static Methods

The following Image class static methods are defined in the graphics module:

Image Image.new(size[,mode='RGB16'])
Creates and returns a new Image object with the given size and mode. size is a two-element
tuple. mode specifies the color mode of the Image to be created. It can be one of the following:

o '1': Black and white (1 bit per pixel)

o 'L': 256 gray shades (8 bits per pixel)

o 'RGB12': 4096 colors (12 bits per pixel)

o 'RGB16': 65536 colors (16 bits per pixel)

o 'RGB': 16.7 million colors (24 bits per pixel)

Image Image.open(filename) Not supported in 1st Edition!
Returns a new Image object (mode RGB16) that contains the contents of the named file. The
supported file formats are JPEG and PNG. The file format is automatically detected based on file
contents. filename should be a full path name.

dict Image.inspect(filename) Not supported in 1st Edition!
Examines the given file and returns a dictionary of the attributes of the file. At present the
dictionary contains only the image size in pixels as a two-element tuple, indexed by key
'size'. filename should be a full path name.

 Python for Series 60 Platform API Reference 28

Forum.Nokia.com

6.3 Image Objects

An Image object encapsulates an in-memory bitmap.

Note on asynchronous methods: Methods resize, transpose, save, and load have an optional
callback argument. If the callback is not given, the method call is synchronous; when the method
returns, the operation is complete or an exception has been raised. If the callback is given, the method
calls are asynchronous. If all parameters are valid and the operation can start, the method call will
return immediately. The actual computation then proceeds in the background. When it is finished, the
callback is called with an error code as the argument. If the given code is 0, the operation completed
without errors, otherwise an error occurred.

It is legal to use an unfinished image as a source in a blit operation; this will use the image data as it
is at the moment the blit is made and may thus show an incomplete result.

Image objects have the following methods:

resize(newsize[,callback=None,keepaspect=0]) Not supported in 1st Edition!
Returns a new image that contains a resized copy of this image. If keepaspect is set to 1, the
resize will maintain the aspect ratio of the image, otherwise the new image will be exactly the
given size.

If callback is given, the operation is asynchronous, and the returned image will be only
partially complete until callback is called.

transpose(direction[,callback=cb]) Not supported in 1st Edition!
Creates a new image that contains a transformed copy of this image. The direction
parameter can be one of the following:

o FLIP_LEFT_RIGHT: Flips the image horizontally, exchanging left and right edges.

o FLIP_TOP_BOTTOM: Flips the image vertically, exchanging top and bottom edges.

o ROTATE_90: Rotates the image 90 degrees counterclockwise.

o ROTATE_180: Rotates the image 180 degrees.

o ROTATE_270: Rotates the image 270 degrees counterclockwise.

If callback is given, the operation is asynchronous and the returned image will be only
partially complete until callback is called.

load(filename[,callback=None]) Not supported in 1st Edition!
Replaces the contents of this Image with the contents of the named file, while keeping the
current image mode. This Image object must be of the same size as the file to be loaded.

If callback is given, the operation is asynchronous and the loaded image will be only
partially complete until callback is called. filename should be a full path name.

save(filename[,callback=None, format=None, quality=75, bpp=24,
compression='default']) Not supported in 1st Edition!

Saves the image into the given file. The supported formats are JPEG and PNG. If format is not
given or is set to None, the format is determined based on the file name extension: '.jpg' or
'.jpeg' are interpreted to be in JPEG format and '.png' to be in PNG format. filename should
be a full path name.

When saving in JPEG format, the quality argument specifies the quality to be used and can
range from 1 to 100.

 Python for Series 60 Platform API Reference 29

Forum.Nokia.com

When saving in PNG format, the bpp argument specifies how many bits per pixel the resulting
file should have, and compression specifies the compression level to be used.
Valid values for bpp are:

o 1: Black and white, 1 bit per pixel

o 8: 256 gray shades, 8 bits per pixel

o 24: 16.7 million colors, 24 bits per pixel

Valid values for compression are:

o 'best': The highest possible compression ratio, the slowest speed

o 'fast': The fastest possible saving, moderate compression

o 'no': No compression, very large file size

o 'default': Default compression, a compromise between file size and speed

If callback is given, the operation is asynchronous. When the saving is complete, the
callback is called with the result code.

stop()
Stops the current asynchronous operation, if any. If an asynchronous call is not in progress, this
method has no effect.

Image objects have the following attribute:

size
A two-element tuple that contains the size of the Image. Read-only.

6.4 Common Features of Drawable Objects

Objects that represent a surface that can be drawn on support a set of common drawing methods,
described in this section. At present there are two such objects: Canvas from the appuifw module
and Image from the graphics module.

6.4.1 Options

Many of these methods support a set of standard options. This set of options is as follows:

• outline: The color to be used for drawing outlines of primitives and text. If None, the outlines
of primitives are not drawn.

• fill: The color to be used for filling the insides of primitives. If None, the insides of primitives
are not drawn. If pattern is also specified, fill specifies the color to be used for areas where
the pattern is white.

• width: The line width to be used for drawing the outlines of primitives.

• pattern: Specifies the pattern to be used for filling the insides of primitives. If given, this must
be either None or a 1-bit (black and white) Image.

 Python for Series 60 Platform API Reference 30

Forum.Nokia.com

6.4.2 Coordinate representation

The methods accept an ordered set of coordinates in the form of a coordinate sequence. Coordinates
can be of type int, long, or float. A valid coordinate sequence is a non-empty sequence of either

• Alternating x and y coordinates. In this case the sequence length must be even, or

• Sequences of two elements, that specify x and y coordinates.

Examples of valid coordinate sequences:

(1, 221L, 3, 4, 5.85, -3): A sequence of three coordinates

[(1,221L),(3,4),[5.12,6]): A sequence of three coordinates

(1,5): A sequence of one coordinate

[(1,5)]: A sequence of one coordinate

[[1,5]]: A sequence of one coordinate

Examples of invalid coordinate sequences:

Note: Invalid code, do not use!

[]: An empty sequence

(1,2,3): Odd number of elements in a flat sequence

[(1,2),(3,4),None]: Contains an invalid element

([1,2],3,4): Mixing the flat and nested form is not allowed

6.4.3 Color representation

All methods that take color arguments accept the following two color representations:

• A three-element tuple of integers in the range from 0 to 255 inclusive, representing the red,
green, and blue components of the color.

• An integer of the form 0xrrggbb, where rr is the red, gg the green, and bb the blue component
of the color.

For 12 and 16 bit color modes the color component values are simply truncated to the lower bit depth.
For the 8-bit grayscale mode images the color is converted into grayscale using the formula
(2*r+5*g+b)/8, rounded down to the nearest integer. For 1-bit black and white mode images the color
is converted into black (0) or white (1) using the formula (2*r+5*g+b)/1024.

Examples of valid colors:

0xffff00: Bright yellow

0x004000: Dark green

(255,0,0): Bright red

0: Black

 Python for Series 60 Platform API Reference 31

Forum.Nokia.com

255: Bright blue

(128,128,128): Medium gray

Examples of invalid colors:

Note: Invalid code, do not use!

(0,0.5,0.9): Floats are not supported

'#ff80c0': The HTML color format is not supported

(-1,0,1000): Out-of-range values

(1,2): The sequence is too short

[128,128,192]: This is not a tuple

6.4.4 Font specifications

Font can be specified in two ways. Either as a Unicode string that represents a full font name, such as
u'LatinBold19', or as a plain string symbolic name that refers to a font setting currently specified
by the UI framework. You can obtain a list of all available fonts with the appuifw module function
available_fonts.

The symbolic names for UI fonts are:

o 'normal'

o 'dense'

o 'title'

o 'symbol'

o 'legend'

o 'annotation'

Note: Since background processes have no access to the UI framework, these symbolic names are not
supported in them. You need to specify the full font name.

6.4.5 Common Methods of Drawable Objects

line(coordseq[,<options>])
Draws a line connecting the points in the given coordinate sequence. For more information
about the choices available for options, see Section 6.4.1, Options.

polygon(coordseq[,<options>])
Draws a line connecting the points in the given coordinate sequence, and additionally draws an
extra line connecting the first and the last point in the sequence. If a fill color or pattern is
specified, the polygon is filled with that color or pattern. For more information about the
choices available for options, see Section 6.4.1, Options.

rectangle(coordseq[,<options>])
Draws rectangles between pairs of coordinates in the given sequence. The coordinates specify
the top-left and the bottom-right corners of the rectangle. The sequence must have an even
number of coordinates. For more information about the choices available for options, see
Section 6.4.1, Options.

 Python for Series 60 Platform API Reference 32

Forum.Nokia.com

ellipse(coordseq[,<options>])

pieslice(coordseq, start, end, [,<options>])

arc(coordseq, start, end, [,<options>])
Draws complete ellipses or portions of an ellipse between pairs of coordinates in the given
sequence. The coordinates specify the top-left and bottom-right corners of the rectangle inside
which the ellipse is contained. The sequence must have an even number of coordinates.

The ellipse method draws complete ellipses, the pieslice method draws sectors of the
ellipse and the arc method draws portions of the ellipse arc. The start and end parameters are
floats that specify the start and end points of the pieslice or arc as the starting and ending
angle in radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left and
-pi/2 is straight down.

For more information about the choices available for options, see Section 6.4.1, Options.

point(coordseq, start, end, [,<options>])
Draws points in each coordinate in the given coordinate sequence. If the width option is set to
greater than 1, draws a crude approximation of a circle filled with the outline color in the
locations. Note that the approximation is not very accurate for large widths; use the ellipse
method if you need a precisely formed circle. For more information about the choices available
for options, see Section 6.4.1, Options.

clear([color=0xffffff])
Sets the entire surface of the drawable to the given color, white by default.

text(coordseq, text, [fill=0, font=u"LatinBold12"])
Draws the given text in the points in the given coordinate sequence with the given color
(default value is black) and the given font (default value is u"LatinBold12"). The font
specification format is described above.

blit(image[,target=(0,0),source=((0,0),image.size),mask=None,scale=0])
Copies the source area from the given image to the target area in this drawable. The source
area is copied in its entirety if mask is not given or is set to None. If the mask is given, the
source area is copied where the mask is white. mask can be either None or a 1-bit (black and
white) Image and must be of the same size as the source image.

target and source specify the target area in this image and the source area in the given
source. They are coordinate sequences of one or two coordinates. If they specify one
coordinate, it is interpreted as the upper-left corner for the area; if they specify two
coordinates, they are interpreted as the top-left and bottom-right corners of the area.

If scale is other than zero, scaling is performed on the fly while copying the source area to the
target area. If scale is zero, no scaling is performed, and the size of the copied area is clipped
to the smaller of source and target areas.

Note that a blit operation with scaling is slower than one without scaling. If you need to blit
the same Image many times in a scaled form, consider making a temporary Image of the
scaling result and blitting it without scaling. Note also that the scaling performed by the blit
operation is much faster but of worse quality than the one done by the resize method, since
the blit method does not perform any antialiasing.

 Python for Series 60 Platform API Reference 33

Forum.Nokia.com

7 e32 Module

The e32 module offers Symbian OS related utilities that are not related to the UI and are not provided
by the standard Python library modules.

7.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the e32
module:

ao_yield()
Yields to the active scheduler to have ready active objects with priority above normal scheduled
for running. This has the effect of flushing the eventual pending UI events. Note that the UI
callback code may be run in the context of the thread that performs an ao_yield. For
information on active scheduler, see Series 60 SDK documentation [4].

ao_sleep(interval [,callback])
Sleeps for the given interval without blocking the active scheduler. When the optional
callback is given, the call to ao_sleep returns immediately and the callback gets called
after interval.

callgate ao_callgate(wrapped_callable)
Wraps wrapped_callable into a callable object callgate that can be called in any thread.
As a result of a call to callgate, wrapped_callable gets called in the context of the thread
that originally created the callgate. Arguments can be given to the call. This is actually a simple
wrapping of the Symbian active object facility.

driveletters drive_list()
Returns a list of currently visible drives as a list of Unicode strings '<driveletter>:'

file_copy(target_name, source_name)
Copies the file source_name to target_name. The names must be complete paths.

mode in_emulator()
Returns 1 if running in an emulator, or 0 if running on a device.

pys60_version
A string containing the version number of the Python for Series 60 and some additional
information.
Example:
>>> import e32
>>> e32.pys60_version
'1.2 final'

pys60_version_info
A tuple containing the five components of the Python for Series 60 version number: major,
minor, micro, release level, and serial. All values except release level are integers; the release
level is a string and is either 'alpha', 'beta', 'candidate', or 'final'. The
pys60_version_info value corresponding to the Python for Series 60 version 1.2 is (1,
2, 'final', 0).

 Python for Series 60 Platform API Reference 34

Forum.Nokia.com

s60_version_info
The SDK version with which this Python was compiled (tuple). The following values are
possible:

o (1, 2) for Series 60 1st Edition

o (2, 0) for Series 60 2nd Edition

o (2, 6) Series 60 2nd Edition Feature Pack 2

Examples:
>>> import e32
>>> e32.pys60_version
'1.2 final'
>>> e32.pys60_version_info
(1, 2, 'final', 0)
>>> e32.s60_version_info
(2, 0)
>>>

bool is_ui_thread()
Returns True if the code that calls this function runs in the context of the UI thread; otherwise
returns False.

start_exe(filename, command [,wait])
Launches the native Symbian OS executable filename (Unicode) and passes it the command
string. When wait is set, the function synchronously waits for the exit of the executable and
returns a value that describes the exit type. Possible values are 0 for normal exit and 2 for
abnormal exit.

start_server(filename)
Starts the Python script in file filename (Unicode) as a server in its own process. Note that
appuifw module is not available to a server script.

7.2 Ao_lock Type

Ao_lock()
Creates an Ao_lock instance. A Symbian active object based synchronization service. This can
be used in the main thread without blocking the handling of UI events. The application should
not exit while a thread is waiting in Ao_lock. If Ao_lock is called while another wait is in
progress, an AssertionError is raised.

Instances of Ao_lock type have the following methods:

wait()
If the lock has already been signaled, returns immediately. Otherwise blocks in wait for the lock
to be signaled. Only one waiter is allowed, so you should avoid recursive calls to this service.
wait can only be called in the thread that created the lock object. During the wait, other
Symbian-active objects are being served, so the UI will not freeze. This may result in the UI
callback code being run in the context of the thread that is waiting in Ao_lock. This must be
considered when designing the application logic.

signal()
Signals the lock. The waiter is released.

 Python for Series 60 Platform API Reference 35

Forum.Nokia.com

8 e32db Module

The e32db module provides an API for relational database manipulation with a restricted SQL syntax.
For details of DBMS support, see Series 60 SDK documentation [4].

8.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the e32db
module:

datetimestring format_rawtime(timevalue)
Formats the given time value (Symbian time) according to the current system's date/time
formatting rules and returns it as a Unicode string.

datetimestring format_time(timevalue)
Formats the given time value according to the current system's date/time formatting rules and
returns it as a Unicode string.

8.2 Dbms Type

Dbms()
Creates a Dbms object. Dbms objects support basic operations on a database.

Instances of Dbms type have the following methods:

begin()
Begins a transaction on the database.

close()
Closes the database object. It is safe to try to close a database object even if it is not open.

commit()
Commits the current transaction.

compact()
Compacts the database, reclaiming unused space in the database file.

create(dbname)
Creates a database with path dbname.

retval execute(query)
Executes an SQL query. On success, returns 0 if a DDL (SQL schema update) statement was
executed. Returns the number of rows inserted, updated, or deleted, if a DML (SQL data update)
statement was executed.

open(dbname)
Opens the database in file dbname. This should be a full Unicode path name, for example,
u'c:\\foo.db'.

rollback()
Rolls back the current transaction.

 Python for Series 60 Platform API Reference 36

Forum.Nokia.com

8.3 DB_view Type

Db_view
Creates a Db_view object. DB_view objects generate rowsets from a SQL query. They provide
functions to parse and evaluate the rowsets.

Instances of Db_view type have the following methods:

value col(column)
Extracts a value from column and returns the corresponding Python value. The first column
of the rowset has the index 1. If the type of the column is not supported, a TypeError is
raised. See Table 1 for a list of supported data types.

cols col_count()
Returns the number of columns defined in the rowset.

len col_length(column)
Gets the length of the value in column: empty columns have a length of zero; non-empty
numerical and date/time columns have a length of 1. For text columns, the length is the
character count, and for binary columns, the length is the byte count.

value col_raw(column)
Extracts the value of column as raw binary data, and returns it as a Python string. The first
column of the rowset has the index 1. See Table 1 for a list of supported data types.

value col_rawtime(column)
Extracts the value of date/time column as a long integer, which represents the raw Symbian
time value. The first column of the rowset has the index 1. See Table 1 for a list of the
supported data types.

value col_type(column)
Returns the numeric type of the given column as an integer from a Symbian-specific list of
types. This function is used in the implementation of method col.

rows count_line()
Returns the number of rows available in the rowset.

first_line()
Positions the cursor on the first row in the rowset.

get_line()
Gets the current row data for access.

is_col_null(column)
Tests whether column is empty. Empty columns can be accessed like normal columns. Empty
numerical columns return a 0 or an equivalent value, and text and binary columns have a zero
length.

next_line()
Moves the cursor to the next row in the rowset.

prepare(db, query)
Prepares the view object for evaluating an SQL select statement. db is a Dbms object and
query the SQL query to be executed.

For examples on using this module, see Programming with Python for Series 60 Platform [6].

 Python for Series 60 Platform API Reference 37

Forum.Nokia.com

8.4 Mapping Between SQL and Python Data Types

See Table 1 for a summary of mapping between SQL and Python data types. The col function can
extract any value except LONG VARBINARY and return it as the proper Python value. In addition, the
col_raw function can extract any column type except LONG VARCHAR and LONG VARBINARY as
raw binary data and return it as a Python string.

Inserting, updating, or searching for BINARY, VARBINARY, or LONG VARBINARY values is not
supported. BINARY and VARBINARY values can be read with col or col_raw.

8.5 Date and Time Handling

The functions col and format_time use Unix time, seconds since January 1, 1970, 00:00:00 UTC, as
the time format. Internally the database uses the native Symbian time representation that provides
greater precision and range than the Unix time. The native Symbian time format is a 64-bit value that
represents microseconds since January 1st 0 AD 00:00:00 local time, nominal Gregorian. BC dates are
represented by negative values. Since converting this format to Unix time and back may cause slight
round-off errors, you have to use the functions col_rawtime and format_rawtime if you need to
be able to handle these values with full precision.

The representation of date and time literals in SQL statements depends on the current system date
and time format. Note that the only accepted ordering of day, month, and year is the one that the
system is currently configured to use. Dates in other order are rejected. The recommended way to
form date/time literals for SQL statements is to use the functions format_time or
format_rawtime that format the given date/time values properly according to the current system's
date/time format settings.

 Python for Series 60 Platform API Reference 38

Forum.Nokia.com

Table 1: Mapping between SQL and Python types

SQL type Symbian column type (in the
DBMS C++ API)

Python type Supported

BIT EDbColBit

TINYINT EDbColInt8

UNSIGNED TINYINT EDbColUint8

SMALLINT EDbColInt16

UNSIGNED SMALLINT EDbColUint16

INTEGER EDbColInt32

UNSIGNED INTEGER EDbColUint32

COUNTER
EDbColUint32 (with the
TDbCol::EAutoIncrement
attribute)

int

BIGINT EDbColInt64 long

REAL EDbColReal32

FLOAT

DOUBLE

DOUBLE PRECISION

EDbColReal64

float

DATE

TIME

TIMESTAMP

EDbColDateTime

float

(or long, with
col_rawtime())

CHAR(n)

VARCHAR(n)

EDbColText

LONG VARCHAR EDbColLongText

Unicode

yes

BINARY(n)

VARBINARY(n)

EDbColBinary

str read only

LONG VARBINARY EDbColLongBinary n/a no

 Python for Series 60 Platform API Reference 39

Forum.Nokia.com

9 e32dbm Module

The e32dbm module provides a DBM API that uses the native Symbian RDBMS as its storage back-end.
The module API resembles that of the gdbm module. The main differences are:

• The firstkey() - nextkey() interface for iterating through keys is not supported. Use the
"for key in db" idiom or the keys or keysiter methods instead.

• This module supports a more complete set of dictionary features than gdbm.

• The values are always stored as Unicode, and thus the values returned are Unicode strings even if
they were given to the DBM as normal strings.

9.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the e32dbm
module:

e32dbm_object open(dbname[,flags[,mode]])
Opens or creates the given database file and returns e32dbm_object. Note that dbname
should be a full path name, for example, u'c:\\foo.db'. Flags can be:

• 'r' - opens an existing database in read-only mode. This is the default value.

• 'w' - opens an existing database in read-write mode.

• 'c' – opens a database in read-write mode. Creates a new database if the database does not
exist.

• 'n' – creates a new empty database and opens it in read-write mode.

If the character 'f' is appended to flags, the database is opened in fast mode. In fast mode, updates are
written to the database only when one of these methods is called: sync, close, reorganize, or
clear.

Since the connection object destructor calls close, it is not strictly necessary to close the database
before exiting to ensure that data is saved, but it is still good practice to call the close method when
you are done with using the database. Closing the database releases the lock on the file and allows
the file to be reopened or deleted without exiting the interpreter.

Note: If you plan to do several updates, it is highly recommended that you open the database in fast
mode, since inserts and updates are more efficient when they are bundled together in a larger
transaction. This is especially important when you plan to insert large amounts of data, since inserting
records to e32db is very slow if done one record at a time.

9.2 e32dbm Objects

The e32dbm objects returned by the open function support most of the standard dictionary methods.
The supported dictionary methods are:

• __getitem__

• __setitem__

• __delitem__

• has_key

• update

• __len__

 Python for Series 60 Platform API Reference 40

Forum.Nokia.com

• __iter__

• iterkeys

• iteritems

• itervalues

• get

• setdefault

• pop

• popitem

• clear

These work the same way as the corresponding methods in a normal dictionary.

In addition, e32dbm objects have the following methods:

close()
Closes the database. In fast mode, commits all pending updates to disk. close raises an
exception if called on a database that is not open.

reorganize()
Reorganizes the database. Reorganization calls compact on the underlying e32db database
file, which reclaims unused space in the file. Reorganizing the database is recommended after
several updates.

sync()
In fast mode, commits all pending updates to disk.

 Python for Series 60 Platform API Reference 41

Forum.Nokia.com

10 messaging Module

The messaging module offers APIs to messaging services. Currently, the messaging module has
one function:

sms_send(recipient, message)
Sends an SMS message with body text message (Unicode) to telephone number recipient
(string).

 Python for Series 60 Platform API Reference 42

Forum.Nokia.com

11 location Module

The location module offers APIs to location information related services. Currently, the location
module has one function:

mcc, mnc, lac, cellid gsm_location()
Retrieves GSM location information: Mobile Country Code, Mobile Network Code, Location Area
Code, and Cell ID. A location area normally consists of several base stations. It is the area where
the terminal can move without notifying the network about its exact position. mcc and mnc
together form a unique identification number of the network into which the phone is logged.

 Python for Series 60 Platform API Reference 43

Forum.Nokia.com

12 sysinfo Module

The sysinfo module offers an API for checking the system information of a Series 60 mobile device.

Note: The method ring_type is not available for Series 60 1st Edition.

The sysinfo module has the following functions:

battery battery()
Returns the current battery level ranging from 0 to 7, with 0 meaning that the battery is empty
and 7 meaning that the battery is full. If using an emulator, value 0 is always returned.

(width, height) display_twips()
Returns the width and height of the display in twips. For a definition of a twip, see Chapter 19,
Terms and Abbreviations.

(width, height) display_pixels()
Returns the width and height of the display in pixels.

free_space free_drivespace()
Returns the amount of free space left on the drives in bytes, for example {u'C:' 100}. The
keys in the dictionary are the drive letters followed by a colon (:).

imei imei()
Returns the IMEI code of the device as a Unicode string. If using an emulator, the hardcoded
string u'000000000000000' is returned.

maxram max_ramdrive_size()
Returns the maximum size of the RAM drive on the device.

ram total_ram()
Returns the amount of RAM memory on the device.

free_ram free_ram()
Returns the amount of free RAM memory available on the device.

rom total_rom()
Returns the amount of read-only ROM memory on the device.

ringtype ring_type() Not supported in 1st Edition!
Returns the current ringing type as a string, which can be one of the following: 'normal',
'ascending', 'ring_once', 'beep', or 'silent'.

(major, minor, build) os_version()
Returns the operating system version number of the device as integers. The returned version is
defined by a set of three numbers as follows1:

o The major version number, ranging from 0 to 127 inclusive

o The minor version number, ranging from 0 to 99 inclusive

o The build number, ranging from 0 to 32767 inclusive.

signal signal()
Returns the current network signal strength ranging from 0 to 7, with 0 meaning no signal and
7 meaning a strong signal. If using an emulator, value 0 is always returned.

1 Descriptions for these values are based on information found in Series 60 SDK documentation [4].

 Python for Series 60 Platform API Reference 44

Forum.Nokia.com

sw_version sw_version()
Returns the software version as a Unicode string. If using an emulator, the hardcoded string
u'emulator' is returned. For example, a software version can be returned as u'V 4.09.1
26-02-04 NHL-10 (c) NMP'.

 Python for Series 60 Platform API Reference 45

Forum.Nokia.com

13 camera Module

Note: Not available for Series 60 1st Edition.

The camera module enables taking photographs.

The camera module has the following functions1:

number cameras_available()
Returns the number of cameras available in the device.

values image_modes()
Returns the image modes supported in the device as a list of strings, for example: ['RGB12',
'RGB', 'RGB16'].

values image_sizes()
Returns the image sizes (resolution) supported in the device as a list of (x, y) tuples, for
example: [(640, 480), (160, 120)].

modes flash_modes()
Returns the flash modes available in the device as a list of strings.

value max_zoom()
Returns the maximum digital zoom value supported in the device as an integer.

modes exposure_modes()
Returns the exposure settings supported in the device as a list of strings.

modes white_balance_modes()
Returns the white balance modes available in the device as a list of strings.

Image take_photo([mode='RGB16', size=(640, 480), flash='auto', zoom=0,
exposure='auto', white_balance='auto', position=0])

Takes a photograph and returns the image in Image format (for more information on Image
format, see Chapter 6, graphics Module). If some other application is using the camera, this
operation fails, for example with SymbianError: KErrInUse. The settings listed below
describe all settings that are supported by the camera module. You can retrieve the mode
settings available for your device by using the appropriate functions listed at the beginning of
this chapter.

o mode is the display mode of the image. The default value is 'RGB16'. The following display
modes are supported:

• 'RGB12': 4096 colors (12 bits per pixel)

• 'RGB16': 65536 colors (16 bits per pixel). Default value, always supported

• 'RGB': 16.7 million colors (24 bits per pixel)

o size is the resolution of the image. The default value is (640, 480). The following sizes
are supported, for example, in Nokia 6630: (1280, 960), (640, 480) and (160, 120).

o flash is the flash mode setting. The default value is 'none'. The following flash mode
settings are supported:

• 'none'
No flash. Default value, always supported

1 Descriptions for some of the values are based on information found in Series 60 SDK documentation [4].

 Python for Series 60 Platform API Reference 46

Forum.Nokia.com

• 'auto'
Flash will automatically fire when required

• 'forced'
Flash will always fire

• 'fill_in'
Reduced flash for general lighting

• 'red_eye_reduce'
Red-eye reduction mode

o zoom is the digital zoom factor. It is assumed to be on a linear scale from 0 to the maximum
zoom value allowed in the device. The default value is 0, meaning that zoom is not used.

o exposure is the exposure adjustment of the device. Exposure is a combination of lens
aperture and shutter speed used in taking a photograph. The default value is 'auto'. The
following exposure modes are supported:

• 'auto'
Sets exposure automatically. Default value, always supported

• 'night'
Night-time setting for long exposures

• 'backlight'
Backlight setting for bright backgrounds

• 'center'
Centered mode for ignoring surroundings

o white_balance can be used to adjust white balance to match the main source of light. The
term white balance refers to the color temperature of the current light. A digital camera
requires a reference point to represent white. It will then calculate all the other colors based
on this white point. The default value for white_balance is 'auto' and the following
white balance modes are supported:

• 'auto'
Sets white balance automatically. Default value, always supported

• 'daylight'
Sets white balance to normal daylight

• 'cloudy'
Sets white balance to overcast daylight

• 'tungsten'
Sets white balance to tungsten filament lighting

• 'fluorescent'
Sets white balance to fluorescent tube lighting

• 'flash'
Sets white balance to flash lighting

o position is the camera used if the device, such as Nokia 6680, has several cameras. In Nokia
6680, the camera pointing to the user of the device is located in position 1, whereas the one
pointing away from the user is located in position 0. The default position is 0.

 Python for Series 60 Platform API Reference 47

Forum.Nokia.com

14 audio Module

The audio module enables recording and playing audio files. The audio module supports all the
formats supported by the device, typically: WAV, AMR, MIDI, MP3, AAC, and Real Audio1. For more
information on the audio types supported by different devices, see the Forum Nokia Web site [7] and
Series 60 Platform Web site [8].

14.1 Sound Class Static Methods

The following Sound class static methods are defined in the audio module:

Sound Sound.open(filename)
Returns a new initialized Sound object with the named file opened. Note that filename
should be a full Unicode path name and must also include the file extension, for example
u'c:\\foo.wav'.

14.2 Sound Objects

Sound objects have the following functions:

play([times=1, interval=0])
Starts playback of an audio file from the beginning. Without the parameters times and
interval it plays the audio file one time. times defines the number of times the audio file
is played, the default being 1. If the audio file is played several times, interval gives the time
interval between the subsequent plays in microseconds. Other issues:

o Calling play(audio.KMdaRepeatForever) will repeat the file forever.

o If an audio file is played but not stopped before exiting, the Python script will leave audio
playing on; therefore stop needs to be called explicitly prior to exit.

o Currently the module does not support playing simultaneous audio files, calling play to a
second Sound instance while another audio file is playing, stops the earlier audio file and
starts to play the second Sound instance.

o Calling play while a telephone call is ongoing plays the sound file to uplink. In some devices
the sound file is also played to the device speaker.

o Calling play when already playing or recording results in RuntimeError. Calling stop
prior to play will prevent this from happening.

stop()
Stops playback or recording of an audio file.

record()
Starts recording audio data to a file. If the file already exists, the operation appends to the file.
For Nokia devices, WAV is typically supported for recording. For more information on the audio
types supported by different devices, see the Forum Nokia Web site [7] and Series 60 Platform
Web site [8]. Other issues:

o Calling record while a telephone call is ongoing starts the recording of the telephone call.

o Calling record when already playing or recording results in RuntimeError. Calling stop
prior to record will prevent this from happening.

1 The dynamically loaded audio codec for the sound file is based on the MIME-type information inside the audio file
and file extension.

 Python for Series 60 Platform API Reference 48

Forum.Nokia.com

close()
Closes an opened audio file.

state state()
Returns the current state of the Sound type instance. The different states (constants) are
defined in the audio module. The possible states1 are:

o ENotReady
The Sound object has been constructed but no audio file is open.

o EOpen
An audio file is open but no playing or recording operation is in progress.

o EPlaying
An audio file is playing.

o ERecording
An audio file is being recorded.

1 Descriptions for these options are based on information found in Series 60 SDK documentation [4].

 Python for Series 60 Platform API Reference 49

Forum.Nokia.com

15 telephone Module

This module provides an API to a telephone.

Since the users of the device can also hang-up the phone explicitly, they might affect the current
status of the call. In addition, using this extension in an emulator has no effect since no calls can be
connected.

The telephone module has the following functions:

dial(number)
Dials the number set in number. number is a string, for example u'+358501234567' where
'+' is the international prefix, '358' is the country code, '50' is the mobile network code (or the
area code), and '1234567' is the subscriber number. If there is an ongoing phone call prior to
calling dial from Python, then the earlier call is put on hold and a new call is established.
Calling dial multiple times when, for example, the first call has been answered and a line has
been established results in subsequent calls not being connected.

hang_up()
Hangs up if a call initiated by dial is in process. If this call has already been finished,
SymbianError: KErrNotReady is raised.

 Python for Series 60 Platform API Reference 50

Forum.Nokia.com

16 calendar Module

The calendar module offers an API to calendar services. The calendar module represents a
Symbian agenda database as a dictionary-like CalendarDb object, which contains Entry objects
and which is indexed using the unique IDs of those objects. There are four types of entry objects:
AppointmentEntry, EventEntry, AnniversaryEntry, and TodoEntry.

CalendarDb objects represent a live view into the database. If an entry is changed outside your
Python application, the changes are visible immediately, and conversely any changes you commit into
the database are visible immediately to other applications.

In addition to entries, there are todo lists which contain todo entries. Todo lists are accessed using the
dictionary-like TodoListDict and TodoList objects.

All time parameters use Unix time unless stated otherwise. For more information on Unix time, see
Section 4.5, Date and Time.

Figure 8 demonstrates the relationships of the calendar module objects.

AnniversaryEntryEventEntryAppointmentEntry

Entry

id
content
location
set_time()
start_time
end_time
set_repeat()
get_repeat()

TodoEntry

cross_out_time
todo_list

CalendarDb

1

0…*

name
id

TodoList

set_repeat() takes a dictionary
as its parameter. The dictionary
contains repeat rules for the entry.
get_repeat() returns a dictionary
that contains the entry’s repeat rules.

Figure 8: The calendar module objects

 Python for Series 60 Platform API Reference 51

Forum.Nokia.com

16.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the
calendar module:

Calendardb open()
Opens the default calendar database. Returns a new CalendarDb object.

Calendardb open(filename)
Opens the specified calendar database. Returns a new CalendarDb object. filename
should be a full Unicode path name.

Calendardb open(filename, 'c')
Opens the specified calendar database. If it does not already exist, a new one is created.
Returns a new CalendarDb object. filename should be a full Unicode path name.

Calendardb open(filename, 'n')
Creates a new, empty calendar database. filename should be a full Unicode path name.
Setting filename to an existing file erases the old file and creates a new file by the same
name. Returns a new CalendarDb object.

16.2 CalendarDb Objects

Calendar entries and todo lists are stored in a calendar database. There is one default calendar
database but more calendar databases can be created by invoking open with parameters 'n' or
'c'.

CalendarDb objects have the following methods:

AppointmentEntry add_appointment()
Creates a new appointment entry. The entry is not added and saved into the database until
Entry.commit is called.

EventEntry add_event()
Creates a new event entry. The entry is not added and saved into the database until
Entry.commit is called.

AnniversaryEntry add_anniversary()
Creates a new anniversary entry. The entry is not added and saved into the database until
Entry.commit is called.

TodoEntry add_todo()
Creates a new todo entry. The entry is not added and saved into the database until
Entry.commit is called.

entry_instances
find_instances(start_date,end_date,search_str=u''[,appointments=0,events
=0,anniversaries=0,todos=0])

The parameters for this function include the start date, end date, search string, and optional
parameters. The optional parameters define the entry types to be included into the search. By
default all entry types are included. Returns a list that contains Entry instances found in the
search. An instance is a dictionary that contains the entry ID and the datetime value. An entry
may have several instances if it is repeated, for example once every week, etc. However, all the
returned instances occur on the same day, i.e. on the first day between the start and end
datetime values that contains instances. To search all instances between the initial start and
end datetime values, you may have to execute several searches and change the start datetime
value for each search. A match is detected if the search string is a substring of an entry's
content.

 Python for Series 60 Platform API Reference 52

Forum.Nokia.com

entry_instances
monthly_instances(month,appointments=0,events=0,anniversaries=0,todos=0)

The parameters for this function include month (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances
occurring during the specified calendar month.

entry_instances
daily_instances(day,appointments=0,events=0,anniversaries=0,todos=0)

The parameters for this function include day (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances
occurring on the specified day.

id add_todo_list([name=None])
Creates a new todo list. name sets the name of the todo list (Unicode). Returns the ID of the
created todo list.

vcalendar_string export_vcalendars(tuple<int,..>)
Returns a vcalendar string that contains the specified entries in vCalendar format. The
parameter for this function is a tuple that contains the entry IDs of the exported entries.

entry_ids import_vcalendars(string)
Imports vcalendar entries, given in the string parameter, to the database. Returns a tuple
that contains the unique IDs of the imported entries.

todo_lists
Enables the TodoListDict (dictionary-like) object to access the todo lists of this database.

del db[id]
Deletes the given calendar Entry from the database. db is the CalendarDb object and id is
the unique ID of the calendar Entry.

EntryObject db[id]
Returns a calendar Entry object indicated by the unique ID. The returned object can be one of
the following: AppointmentEntry, EventEntry, AnniversaryEntry, or TodoEntry.
db is the CalendarDb object and id is the unique ID of the calendar Entry.

Success compact()
Compacts the database file. The returned value (integer) indicates the success of compaction; a
value other than zero means that the compaction was successful.

16.3 Entry Objects

An Entry object represents a live view into the state of a single entry in the database. You can access
the entries with an entry's unique ID. If you create a new entry using db.add_appointment etc., it
is saved into the database only if you call the entry’s commit method. In case an entry is already
saved into the database, the autocommit mode is on by default and all the changes are automatically
saved into the database, unless you call the entry’s begin method. If you call the entry’s begin
method, the changes are not saved into the database until you call the entry’s commit method.

Database entries cannot be locked. In other words, other applications are able to make changes to the
database entries you are using (not directly to the EntryObjects you are using, but to their
representation in the database) at the same time you are modifying them, even if you use begin and
commit methods.

 Python for Series 60 Platform API Reference 53

Forum.Nokia.com

Entry objects have the following methods and properties:

content
Sets or returns the entry's content text (Unicode).

commit()
Saves the entry or in case of a new entry adds the entry into the database. Note that this can be
called only in case of a new entry, created with db.add_appointment etc., or after begin is
called.

rollback()
Undoes the changes made after last commit.

set_repeat(dictionary)
Sets the repeat data of the entry. dictionary is a repeat data dictionary that contains all the
repeat rules. For more information on repeat rules, see Section 16.4, Repeat Rules.

repeat_dict get_repeat()
Returns the repeat data dictionary of the entry.

location
Sets or returns the entry's location data (Unicode), for example meeting room information.

set_time(start, end)
Sets the start and end datetime values of the entry (floats). If only one parameter is given, the
other will have the same value.
In case of events, anniversaries, and todo entries the datetime values are truncated to
corresponding date values.
TodoEntries can be made undated with TodoEntry.set_time(None). Making the todo
entry undated means removing the start and end date and all the repeat rules.

start_time
Returns the start datetime value (float) of the entry or None if the start datetime of the entry is
not set.

end_time
Returns the end datetime value (float) of the entry or None if the end datetime of the entry is
not set.

id
Returns the unique ID of the entry.

last_modified
Returns the datetime value (float) of the entry's last modification in universal time.

alarm
Sets or returns an alarm datetime value (float) for the entry. Returns None if alarm is not set.
Alternatively removes the alarm if the value is set to None.
Alarms can be set to all Entry types. However, only alarms set to Appointments and
Anniversaries will actually cause an alarm; this is similar to the Calendar application in your
Nokia device, which allows you to set an alarm only for Meetings and Anniversaries. In addition,
alarms set to any entries residing in a database other than the default database do not cause
actual alarms either.

priority
Sets or returns the priority of the entry, which can be an integer ranging from 0 to 255. Native
Phonebook and Calendar applications in Nokia devices use value 1 for high priority, 2 for
normal priority, and 3 for low priority.

 Python for Series 60 Platform API Reference 54

Forum.Nokia.com

crossed_out
Sets or returns the crossed out value of an entry. A value that is interpreted as false means that
the entry is not crossed out, whereas a value that is interpreted as true means that the entry is
crossed out. Note that TodoEntries must also have a cross-out time while the other entry
types cannot have one. If TodoEntry is crossed out using this method, the moment of
crossing out is set to the cross-out time of the TodoEntry. See also Section 16.3.4, TodoEntry,
cross_out_time.

replication
Sets or returns the entry's replication status, which can be one of the following: 'open',
'private', or 'restricted'.

vcalendar_string as_vcalendar()
Returns this entry as a vCalendar string.

16.3.1 AppointmentEntry Objects

AppointmentEntry class contains no additional methods compared to the Entry class from which
it is derived.

16.3.2 EventEntry

EventEntry class contains no additional methods compared to the Entry class from which it is
derived.

16.3.3 AnniversaryEntry

AnniversaryEntry class contains no additional methods compared to the Entry class from which
it is derived.

16.3.4 TodoEntry

TodoEntry objects represent todo entry types. They have additional properties compared to the
Entry class from which they are derived.

TodoEntry objects have the following additional properties:

cross_out_time
Sets or returns the cross-out date value of the entry. The returned value can be None meaning
that the entry is not crossed out, or the cross-out date (float). The set value must be date (float).
Setting a cross-out time also crosses out the entry. See also Section 16.3, Entry Object,
crossed_out.

todo_list
Sets or returns the ID of the todo list to which this entry belongs.

16.3.5 TodoListDict

TodoListDict objects are dictionary-like objects that enable accessesing todo lists.

TodoListDict objects have the following property:

default_list
Returns the ID of the default todo list.

 Python for Series 60 Platform API Reference 55

Forum.Nokia.com

16.3.6 TodoList

TodoList objects are dictionary-like objects that enable accessesing todo lists.
TodoList objects have the following properties:

name
Sets or returns the name of the todo list as a Unicode string.

id
Returns the ID of the todo list as an integer.

16.4 Repeat Rules

Repeat rules specify an entry's repeat status, that is, the recurrence of the entry. There are six repeat
types:

• daily: repeated daily

• weekly: repeat on the specified days of the week, such as Monday and Wednesday, etc.

• monthly_by_dates: repeat monthly on the specified dates, such as the 15th and 17th day of
the month

• monthly_by_days: repeat monthly on the specified days, such as the fourth Wednesday of the
month, or the last Monday of the month

• yearly_by_date: repeat yearly on the specified date, such as December 24

• yearly_by_day: repeat yearly on the specified day, such as every third Tuesday of May

There are exceptions to repeat rules. For example, you can specify the datetime value (float) in such a
way that the entry is not repeated on a specific day even if the repeat rule would specify otherwise.

You must set the start and end dates (floats) of the repeat. The end date can also be set to None to
indicate that the repeating continues forever. You can set interval defining how often the repeat
occurs, for example in a daily repeat: 1 means every day, 2 means every second day, etc. You can also
set the days specifier which lets you explicitly specify the repeat days; for example in a weekly repeat
you can set "days":[0,2] which sets the repeat to occur on Mondays and Wednesdays. If you do
not set the days specifier, the repeat days are calculated automatically based on the start date.

You can modify repeat data by calling rep_data = entry.get_repeat, then making changes to
rep_data dictionary, and then calling entry.set_repeat(rep_data).

Repeating can be cancelled by calling entry.set_repeat with a parameter that is interpreted to
be false, such as entry.set_repeat(None).

Repeat definition examples:

repeat = {"type":"daily", #repeat type
"exceptions":[exception_day, exception_day+2*24*60*60],
#no appointment on those days
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1} #interval (1=every day, 2=every second day etc.)

 Python for Series 60 Platform API Reference 56

Forum.Nokia.com

repeat = {"type":"weekly", #repeat type
"days":[0,1], #which days in a week (Monday, Tuesday)
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every week, 2=every second week etc.)

repeat = {"type":"monthly_by_days", #repeat type
appointments on second Tuesday and last Monday of the month
"days":[{"week":1, "day":1},{"week":4, "day":0}],
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every month, 2=every second month etc.)

repeat = {"type":"monthly_by_dates", #repeat type
"days":[0,15],
appointments on the 1st and 16th day of the month.
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every month, 2=every second month etc.)

repeat = {"type":"yearly_by_date", #repeat type
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+3*365*24*60*60, #end of the repeat
"interval":1}
#interval (1=every year, 2=every second year etc.)

repeat = {"type":"yearly_by_day", #repeat type
appointments on the second Tuesday of February
"days":{"day":1, "week":1, "month":1},
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+3*365*24*60*60, #end of the repeat
"interval":1}
#interval (1=every year, 2=every second year etc.)

 Python for Series 60 Platform API Reference 57

Forum.Nokia.com

17 contacts Module

The contacts module offers an API to address book services allowing the creation of contact
information databases. The contacts module represents a Symbian contact database as a
dictionary-like ContactDb object, which contains Contact objects and which is indexed using the
unique IDs of those objects. A Contact object is itself a list-like object, which contains
ContactField objects and which is indexed using the field indices. Unique IDs and field indices are
integers. The ContactDb object supports a limited subset of dictionary functionality. Therefore, only
__iter__, __getitem__, __delitem__, __len__, keys, values, and items are included.

ContactDb objects represent a live view into the database. If a contact is changed outside your
Python application, the changes are visible immediately, and conversely any changes you commit into
the database are visible immediately to other applications. It is possible to lock a contact for editing,
which will prevent other applications from modifying the contact for as long as the lock is held. This
can be done in, for example, a contacts editor application when a contact is opened for editing, very
much like with the Contacts application in your Nokia device. If you try to modify a contact without
locking it for editing, the contact is automatically locked before the modification and released
immediately afterwards.

17.1 Module Level Functions

The following free functions − functions that do not belong to any class − are defined in the Contact
module:

ContactDb open([filename [,mode]])
Opens a contacts database. filename should be a full Unicode path name. If filename is not
given, opens the default contacts database. If mode is not given, the database must exist. If
mode is 'c', the database is created if it does not already exist. If mode is 'n', a new, empty
database is created, overwriting the possible previous database.

Warning: Using open together with the additional parameters filename or mode is intended for
testing purposes only. Due to Series 60 SDK functionality, the open method can sometimes be
unreliable with these parameters.

17.2 ContactDb Object

There is one default contact database, but it is possible to create several databases with the open
function.

ContactDb objects have the following methods:

Contact add_contact()
Adds a new contact into the database. Returns a Contact object that represents the new
contact. The returned object is already locked for modification. Note that a newly created
contact will contain some empty default fields. If you do not want to use the default fields for
anything, you can ignore them.

matches find(searchterm)
Finds the contacts that contain the given Unicode string as a substring and returns them as a
list.

import_vcards(vcards)
Imports the vCard(s) in the given string into the database.

 Python for Series 60 Platform API Reference 58

Forum.Nokia.com

vcards export_vcards((id,...))
Converts the contacts corresponding to the given IDs to vCards and returns them as a string.

id_list keys()
Returns a list of unique IDs of all Contact objects in the database.

status compact_required()
Verifies whether compacting is recommended. Returns an integer value indicating either a true
or false state. Returns True if more than 32K of space is unused and if this comprises more
than 50 percent of the database file, or if more than 256K is wasted in the database file.

compact()
Compacts the database to its minimum size.

del db[id]
Deletes the given contact from the database.

typedict_list field_types()
Returns a list of dictionary objects that contains information on all supported field types. The
list contains dictionary objects, which each describe one field type. The most important keys in
the dictionary are 'type' and 'location' which together indentify the field type. 'type'
can have string values such as 'email_address'. 'location' can have the string values
'none', 'home', or 'work'. Another important key is 'storagetype', which defines the
storage type of the field. 'storagetype'can have the string values 'text', 'datetime',
'item_id', or 'binary'. Note that the Contacts extension does not support adding,
reading, or modifying fields of any other type than 'text' or 'datetime'. The other content
returned by field_types is considered to be advanced knowledge and is not documented
here.

17.3 Contact Object

A Contact object represents a live view into the state of a single contact in the database. You can
access the fields either with a contact's numeric field ID as contact[fieldid], or using the find
method. Attempting to modify a contact while it has been locked for editing in another application
will raise the exception ContactBusy.

Contact objects have the following attributes:

id
The unique ID of this Contact. Read-only.

title
The title of this Contact. Read-only.

Contact objects have the following methods:

begin()
Locks the contact for editing. This prevents other applications from modifying the contact for as
long as the lock is held. This method will raise the exception ContactBusy if the contact has
already been locked.

commit()
Releases the lock and commits the changes made into the database.

rollback()
Releases the lock and discards all changes that were made. The contact remains in the state it
was before begin.

 Python for Series 60 Platform API Reference 59

Forum.Nokia.com

vcard as_vcard()
Returns the contact as a string in vCard format.

add_field(type[, value[, label=field_label][, location=location_spec])
Adds a new field into this Contact. This method raises ContactBusy if the contact has been
locked by some other application. type can be one of the supported field types as a string. The
following field types can be added at present:

o city

o company_name

o country

o date

o dtmf_string

o email_address

o extended_address

o fax_number

o first_name

o job_title

o last_name

o mobile_number

o note

o pager_number

o phone_number

o po_box

o postal_address

o postal_code

o state

o street_address

o url

o video_number

o wvid

The following field types are recognized but cannot be created at present:

o first_name_reading

o last_name_reading

o picture

o speeddial

o thumbnail_image

o voicetag

All supported field types are passed as strings or Unicode strings, except for 'date' which is a
float that represents Unix time. For more information on Unix time, see Section 4.5, Date and
Time.

field_label is the name of the field shown to the user. If you do not pass a label, the
default label for the field type is used.

 Python for Series 60 Platform API Reference 60

Forum.Nokia.com

location_spec, if given, must be 'home' or 'work'. Note that not all combinations of type
and location are valid. The settings of the current contacts database in use determine which
ones are valid.

matching_fields find([type=field_type][, location=field_location])
Finds the fields of this contact that match the given search specifications. If no parameters are
given, all fields are returned.

del contact[fieldindex]
Deletes the given field from this contact. Note that since this will change the indices of all fields
that appear after this field in the contact, and since the ContactField objects refer to the
fields by index, old ContactField objects that refer to fields after the deleted field will refer
to different fields after this operation.

17.4 ContactField Object

A ContactField represents a field of a Contact at a certain index. A ContactField has
attributes, some of which can be modified. If the parent Contact has not been locked for editing,
modifications are committed immediately to the database. If the parent Contact has been locked,
the changes are committed only when commit is called on the Contact.

ContactField objects have the following attributes:

label
The user-visible label of this field. Read-write.

value
The value of this field. Read-write.

type
The type of this field. Read-only.

location
The location of this field. This can be 'none', 'work', or 'home'.

schema
A dictionary that contains some properties of this field. The contents of this dictionary
correspond to those returned by the ContactDb method field_types. The contents of this
dictionary correspond to those returned by the ContactDb method field_types.

 Python for Series 60 Platform API Reference 61

Forum.Nokia.com

18 Extensions to Standard Library Modules

The following standard modules have been extended.

18.1 thread Module

The following function has been added to the standard thread module:

ao_waittid(thread_id)
Synchronizes with the end of the execution of the thread identified by the given thread_id.
The implementation is based on a Symbian OS active object. For the blocking behavior, see
Section 7.2, Ao_lock Type.

18.2 socket Module

Bluetooth (BT) support has been added to the standard socket module. The following related
constants and functions are defined:

Note: In release 1.0 the functions bt_advertise_service, bt_obex_receive, and
bt_rfcomm_get_available_server_channel incorrectly expected to be given the internal
e32socket.socket object as the socket parameter instead of the proper socket object. Now the
functions work correctly. The old calling convention is still supported but it is deprecated and may be
removed in a future release.

AF_BT
Represents the Bluetooth address family.

BTPROTO_RFCOMM
This constant represents the Bluetooth protocol RFCOMM.

RFCOMM, OBEX
Bluetooth service classes supported by bt_advertise_service.

AUTH, ENCRYPT, AUTHOR
Bluetooth security mode flags.

bt_advertise_service(name, socket, flag, class)
Sets a service advertising the service name (Unicode) on local channel that is bound to socket.
If flag is True, the advertising is turned on, otherwise it is turned off. The service class to be
advertised is either RFCOMM or OBEX.

(address, services) bt_discover([address])
Performs the Bluetooth device discovery (if the optional BT device address is not given) and the
discovery of RFCOMM class services on the chosen device. Returns a pair: BT device address,
dictionary of services, where Unicode service name is the key and the corresponding port is the
value.

(address, services) bt_obex_discover([address])
Same as discover, but for discovery of OBEX class services on the chosen device.

bt_obex_send_file(address, channel, filename)
Sends file filename (Unicode) wrapped into an OBEX object to remote address, channel.

bt_obex_receive(socket, filename)
Receives a file as an OBEX object, unwraps and stores it into filename (Unicode). socket is a
bound OBEX socket.

 Python for Series 60 Platform API Reference 62

Forum.Nokia.com

port bt_rfcomm_get_available_server_channel(socket)
Gets an available RFCOMM server channel for socket.

set_security(socket, mode)
Sets the security level of the given bound socket. The mode is an integer flag that is formed
using a binary or operation of one or more of: AUTH (authentication), ENCRYPT, AUTHOR
(authorization). Example: set_security(s, AUTH | AUTHOR).

Note: When listening to a Bluetooth socket on the phone, it is necessary to set the security level.

Note: SSL is not supported in Series 60 1st Edition. SSL client certificates are not supported at all.

For examples on the usage of these functions, see Programming with Python for Series 60 Platform [6].

 Python for Series 60 Platform API Reference 63

Forum.Nokia.com

19 Terms and Abbreviations

The following list defines the terms and abbreviations used in this document:

AAC; Adaptive Audio Coding AAC provides basically the same sound quality as MP3 while
using a smaller bit rate. AAC is mainly used to compress music.

Advertise Advertise service in Bluetooth makes it known that a certain
Bluetooth service is available.

AMR Adaptive Multi-rate Codec file format.

API Application Programming Interface

Bluetooth Bluetooth is a technology for wireless communication between
devices that is based on a low-cost short-range radio link.

BPP Bits Per Pixel

C STDLIB Symbian OS's implementation of the C standard library

Dialog A temporary user interface window for presenting context-
specific information to the user, or prompting for information in
a specific context.

Discovery Discovery is a process where Bluetooth finds other nearby
Bluetooth devices and their advertised services.

DLL Dynamic link library

GSM; Global System for Mobile
communication

GSM is a digital mobile telephone system that uses a variation of
time division multiple access. It digitizes and compresses data,
then sends it down a channel with two other streams of user
data, each in its own time slot.

GUI Graphical User Interface

I/O input/output

IP Internet Protocol

MBM; MultiBitMap The native Symbian OS format used for pictures. MBM files can be
generated with the "bmconv.exe" tool included in the Series
60 SDK.

MIDI; Musical Instrument Digital
Interface

A protocol and a set of commands for storing and transmitting
information about music.

MIF; Multi-Image File MIF files are similar to MBM files and can contain compressed
SVG-T files. This file type can be generated with the
"MifConv.exe" tool.

MIME; Multipurpose Internet Mail
Extensions

MIME is an extension of the original Internet e-mail protocol that
can be used to exchange different kinds of data files on the
Internet.

MP3 A standard technology and format for compressing a sound
sequence into a very small file while preserving the original level
of sound quality when it is played.

OS Operating System

Real Audio An audio format developed by Real Networks.

 Python for Series 60 Platform API Reference 64

Forum.Nokia.com

RDBMS Relational database management system

SMS; Short Message System
(within GSM)

SMS is a service for sending messages of up to 160 characters, or
224 characters if using a 5-bit mode, to mobile phones that use
GSM communication.

Softkey Softkey is a key that does not have a fixed function nor a
function label printed on it. On a phone, selection keys reside
below or above on the side of the screen, and derive their
meaning from what is presently on the screen.

SQL Structured Query Language

SVG, SVG-T; Scalable Vector
Graphics (-Tiny)

XML-based vector graphics format for describing two-
dimensional graphics and graphical applications.

Twip Twips are screen-independent units to ensure that the
proportion of screen elements are the same on all display
systems. A twip is defined as 1/1440 of an inch, or 1/567 of a
centimeter.

UI User Interface

UI control UI control is a GUI component that enables user interaction and
represents properties or operations of an object.

WAV A file format for recording sound, especially in multimedia
applications.

 Python for Series 60 Platform API Reference 65

Forum.Nokia.com

20 References
1. G. van Rossum, and F.L. Drake, Jr., editor. [Python] Library Reference. Available at

http://www.python.org/doc

2. G. van Rossum, and F.L. Drake, Jr., editor. Extending and Embedding [the Python Interpreter].
Available at http://www.python.org/doc

3. G. van Rossum, and F.L. Drake, Jr., editor. Python/C API [Reference Manual]. Available at
http://www.python.org/doc

4. Series 60 SDK documentation

5. Getting Started with Python for Series 60 Platform

 http://www.forum.nokia.com/

6. Programming with Python for Series 60 Platform

 http://www.forum.nokia.com/

7. Audio & Video section on the Forum Nokia Web site (for Nokia devices)

 http://www.forum.nokia.com/audiovideo

8. Developers section on the Series 60 Platform Web site (for all Series 60 devices)

 http://www.series60.com/

9. Python for Series 60 developer discussion board
http://discussion.forum.nokia.com/

10. Scalable Vector Graphics (SVG) 1.1 Specification
http://www.w3.org/TR/SVG/

 Python for Series 60 Platform API Reference 66

http://www.python.org/doc
http://www.python.org/doc
http://www.python.org/doc
http://www.forum.nokia.com/
http://www.forum.nokia.com/
http://www.forum.nokia.com/audiovideo
http://www.series60.com/
http://discussion.forum.nokia.com/
http://www.w3.org/TR/SVG/

Forum.Nokia.com

Appendix A Python Library Module Support

Table 2: Status of library module support

Name Type Status Remarks

_testcapi PYD Y

anydbm PY X DBM API is implemented by PY e32dbm that relies on PYD
e32db (see Chapter 9, e32dbm Module)

atexit PY X

base64 PY X

bdb PY (X)

binascii built-in X

cmd PY (X)

code PY X

codecs PY X

codeop PY X

copy PY X

copy_reg PY X

cStringIO built-in X

dis PY (X)

errno built-in X

exceptions built-in X

__future__ PY X

httplib PY X

imp built-in X

keyword PY X

linecache PY X

marshal built-in X

math built-in X

md51

built-in X

mimetools PY X

operator built-in X

os,
os.path

PY X Wraps built-in e32posix. Limitations discussed in Section
4.9, Limitations and Areas of Development.

pdb PY (X)

quopri PY X

1 Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm

 Python for Series 60 Platform API Reference 67

Forum.Nokia.com

Name Type Status Remarks

random PY X

re PY X Uses PY sre as its engine.

repr PY X

rfc822 PY X

select PY X A minimal implementation: select is supported only for
input from sockets.

socket PY X Requires PYD e32socket. Contains extensions as described in
Section 18.2, socket Module. Limitations discussed in Section
4.9, Limitations and Areas of Development.

sre PY X Wraps built-in _sre.

string PY X

StringIO PY X

struct built-in X

sys built-in X

thread built-in X Contains extensions as described in Section 18.1, thread
Module

threading PY (X)

time built-in X

traceback PY X

types PY X

urllib PY X

urlparse
(urlsplit only)

PY X

uu PY X

warnings PY X

whichdb PY X

xreadlines built-in X

zipfile PY X

zlib PYD X

Table 2 uses the following coding for module types:

• PY – module is implemented in Python.

• Built-in – module is a built-in C/C++ module.

• PYD – module is a dynamically loadable C/C++ module.

For support status, the following codes are used:

• X – included to the Series 60 Python distribution.

• (X) – not included to the Series 60 Python distribution, but works both on phone and SDK.

 Python for Series 60 Platform API Reference 68

Forum.Nokia.com

• Y – included only to the SDK distribution.

 Python for Series 60 Platform API Reference 69

Forum.Nokia.com

Appendix B Extensions to C API

The native API exported by the interpreter in Series 60 environment consists of class
CSPyInterpreter, Python/C API (see G. van Rossum, and F.L. Drake, Jr., editor. Python/C API
[Reference Manual]. [3]), and a small set of extensions to Python/C API.

B.1 class CSPyInterpreter

class CSPyInterpreter offers an interface for initializing the interpreter and for running scripts.
It exports the following public interface:

static CSPyInterpreter*
NewInterpreterL(TBool aCloseStdlib = ETrue,
 void(*aStdioInitFunc)(void*) = NULL,
 void* aStdioInitCookie = NULL);
TInt RunScript(int argc, char** argv);
void PrintError();
void (*iStdI)(char* buf, int n);
void (*iStdO)(const char* buf, int n);

The caller of the constructor CSPyInterpreter::NewInterpreterL may provide its own
function aStdioInitFunc for initializing Symbian OS STDLIB’s standard I/O descriptors. It gets
called with the argument aStdioInitCookie. The CSPyInterpreter class can also be requested
to leave STDLIB open at its destruction.

The CSPyInterpreter::RunScript method establishes a Python interpreter context and runs
the script file whose full path name is in argv[0] with the given argument vector. After completion,
it leaves the interpreter context and returns a Symbian error code to indicate success or failure.

The CSPyInterpreter::PrintError method can be used to print current Python exception
information to the standard error output.

B.2 Extensions to C API

Defined in symbian_python_ext_util.h:

PyObject* SPyErr_SetFromSymbianOSErr(int error)
Sets Python exception of type PyExc_SymbianError with the value field set to symbolic
name of the Symbian OS enumeration value error and returns NULL. In case error has the
special value KErrPython, it assumes that a Python exception has already been set and
returns NULL.

SPyAddGlobal(), SPyAddGlobalString(), SPyGetGlobal(),
SPyGetGlobalString(), SPyRemoveGlobal() and SPyRemoveGlobalString()

Can be used for storing module implementation’s global data. They are thin wrappers around
PyDict_SetItem, PyDict_SetItemString, PyDict_GetItem,
PyDict_GetItemString, PyDict_DelItem, PyDict_DelItemString,
correspondingly, and can be used in the same way.

PYTHON_TLS->thread_state (defined in "python_globals.h")
Thread state and interpreter lock management must be performed according to the
instructions; see G. van Rossum, and F.L. Drake, Jr., editor. Python/C API [Reference Manual]. [3].
Python for Series 60 Platform extends the Python/C API by offering a facility for querying the
related Python thread state ("PYTHON_TLS -> thread_state") from the context of the
currently running thread. This can be used to re-establish the interpreter context with
PyEval_RestoreThread in C/C++ code.

 Python for Series 60 Platform API Reference 70

Forum.Nokia.com

To Save/restore the interpreter context:

Py_BEGIN_ALLOW_THREADS
[...your code...]
Py_END_ALLOW_THREADS

To Restore/save the interpreter context:

PyEval_RestoreThread(PYTHON_TLS->thread_state)
[... your code...]
PyEval_SaveThread()

Defined in pythread.h (extends the standard thread module’s C API):

PyThread_AtExit(void(*)())
Can be used for registering thread-specific exit functions. In the main thread calling this
function has the same effect as calling Py_AtExit. For more information, see G. van Rossum,
and F.L. Drake, Jr., editor. [Python] Library Reference. [3].

 Python for Series 60 Platform API Reference 71

Forum.Nokia.com

Appendix C Extending Series 60 Python

C.1 Overview

The general rules and guidelines for writing Python extensions apply in the Series 60 Python
environment as well; for more information, see G. van Rossum, and F.L. Drake, Jr., editor. Extending and
Embedding [the Python Interpreter].[2]. The Python/C API is available, see G. van Rossum, and F.L. Drake,
Jr., editor. Python/C API [Reference Manual]. [3]. In addition, for an example on porting a simple
extension to Series 60, see Programming with Python for Series 60 Platform [6].

The issues that need to be considered in the implementation of the extension modules include:

• Preparation of the data structures that make the C/C++ coded extensions visible to the Python
interpreter and make it possible to perform calls from Python to C/C++ code

• Conversions between C/C++ representations of the Python objects and object types used in the
extension code

• Maintenance of the reference counts of the C/C++ representations of the Python objects

• Passing of exceptions between C/C++ code and Python

• Management of interpreter’s thread state and the interpreter lock

In addition to the concerns common for all Python C extensions, the following principles should be
considered when implementing new Python interfaces in the Series 60 environment:

• Maximize the usage of Python’s built-in types at the interfaces.

• Related to the above: design interfaces in such a way that information can be passed between
them with minimal conversions.

• Convert Symbian operating system exceptions / errors to Python exceptions.

• Unicode strings are used at the interfaces to represent text that gets shown on the GUI. They can
be passed to and from Symbian operating system without conversions.

• While performing potentially long-lasting / blocking calls from an extension implementation to
services outside the interpreter, the interpreter lock must be released and then re-acquired after
the call.

• Rather than always implementing a thin wrapper on top of a Symbian OS facility, consider the
actual task for which the script writer needs the particular interface. For example, if the task
involves interaction with the users using the GUI, the script writer’s interest may well be limited
to performing the interaction / information exchange in a way that is compatible with the UI style
rather than having full control of the low-level details of the GUI implementation.

• The C/C++ implementation of a Python interface should be optimized for performance and
covering access to the necessary features of the underlying Platform. Where necessary, the Python
programming interface can be further refined by wrapper modules written in Python.

An extension module is packaged in its own dynamically loadable library that must be installed into
\system\libs directory and named <module_name>.pyd. The module initialization function
must be exported at ordinal 1. The module identification is based on the filename only. As a special
feature of Series 60 Python, an optional module finalizer function may be exported at ordinal 2.

Warning: The macro versions of memory-management functions PyMem_MALLOC and
PyObject_NEW are not included. Use the functions PyMem_Malloc and PyObject_New instead.

 Python for Series 60 Platform API Reference 72

Forum.Nokia.com

C.2 Services for Extensions

Series 60 Python Platform implements an adaptation layer between Series 60 UI application
framework and script language UI extensions to simplify UI extension development. This API is used
by the implementation of the appuifw module but not exported in the current release. Some general
utility services for extensions are also provided, see Appendix B, Extensions to C API.

C.3 Example

The extension code snippet in Figure 9 demonstrates some of the issues mentioned in C.1, Overview:

 01 extern "C" PyObject *
02 note(PyObject* /*self*/, PyObject *args)
03 {
04 TInt error = KErrNone;
05 int l_tx, l_ty;
06 char *b_tx, *b_ty;
07
08 if (!PyArg_ParseTuple(args, "u#s#", &b_tx, &l_tx, &b_ty, &l_ty))
09 return NULL;
10
11 TPtrC8 stype((TUint8*)b_ty, l_ty);
12 TPtrC note_text((TUint16 *)b_tx, l_tx);
13 CAknResourceNoteDialog* dlg = NULL;
14
15 if (stype.Compare(KErrorNoteType) == 0)
16 dlg = new CAknErrorNote(ETrue);
17 else if (stype.Compare(KInfoNoteType) == 0)
18 dlg = new CAknInformationNote(ETrue);
19 else if (stype.Compare(KConfNoteType) == 0)
20 dlg = new CAknConfirmationNote(ETrue);
21 else {
22 PyErr_BadArgument();
23 return NULL;
24 }
25
26 if (dlg == NULL)
27 return PyErr_NoMemory();
28
29 Py_BEGIN_ALLOW_THREADS
30 TRAP(error, dlg->ExecuteLD(note_text));
31 Py_END_ALLOW_THREADS
32
33 if (error != KErrNone)
34 return SPyErr_SetFromSymbianOSErr(error);
35 else {
36 Py_INCREF(Py_None);
37 return Py_None;
38 }
39 }

Figure 9: An example C/C++ extension snippet.

• Conversion from Python data types, usage of built-in data types at extension interface, usage of
Unicode strings (lines 8-12)

• Maintenance of the reference counts (line 36)

• Passing of exceptions between C/C++ code and Python (line 34)

 Python for Series 60 Platform API Reference 73

Forum.Nokia.com

• Releasing the interpreter lock while performing a blocking call to a service outside the interpreter
(lines 29, 31)

• Simplifying the API to the note facility of the Platform

 Python for Series 60 Platform API Reference 74

	Introduction
	Scope
	Audience
	New in Release 1.2
	Typographical Conventions
	Naming Conventions

	API Summary
	Python Standard Library
	Python for Series 60 Extensions
	Built-in extensions
	Dynamically loadable extensions

	Third-Party Extensions

	Python for Series 60 UI Programming Model
	Overview
	Basics of appuifw Module
	appuifw UI Controls
	Softkeys

	Selected Issues on Python Programming for Series 60
	Concurrency Aspects
	Current Series 60 Python Script Execution Environment
	Standard I/O Streams
	Usage of Unicode
	Date and Time
	Sharing Native Resources between Threads
	Scalable User Interface
	Error Handling
	Limitations and Areas of Development

	appuifw Module
	Module Level Functions
	Application Type
	Form Type
	Text Type
	Listbox Type
	Icon Type
	Content_handler Type
	Canvas Type

	graphics Module
	Module Level Functions
	Image Class Static Methods
	Image Objects
	Common Features of Drawable Objects
	Options
	Coordinate representation
	Color representation
	Font specifications
	Common Methods of Drawable Objects

	e32 Module
	Module Level Functions
	Ao_lock Type

	e32db Module
	Module Level Functions
	Dbms Type
	DB_view Type
	Mapping Between SQL and Python Data Types
	Date and Time Handling

	e32dbm Module
	Module Level Functions
	e32dbm Objects

	messaging Module
	location Module
	sysinfo Module
	camera Module
	audio Module
	Sound Class Static Methods
	Sound Objects

	telephone Module
	calendar Module
	Module Level Functions
	CalendarDb Objects
	Entry Objects
	AppointmentEntry Objects
	EventEntry
	AnniversaryEntry
	TodoEntry
	TodoListDict
	TodoList

	Repeat Rules

	contacts Module
	Module Level Functions
	ContactDb Object
	Contact Object
	ContactField Object

	Extensions to Standard Library Modules
	thread Module
	socket Module

	Terms and Abbreviations
	References

